354 research outputs found

    Reduced inhibitory action of a GABA(B )receptor agonist on [(3)H]-dopamine release from rat ventral tegmental area in vitro after chronic nicotine administration

    Get PDF
    BACKGROUND: The activation of GABA(B )receptors in the ventral tegmental area (VTA) has been suggested to attenuate the rewarding properties of psychostimulants, including nicotine. However, the neurochemical mechanism that underlie this effect remains unknown. Since GABA(B )receptors modulate the release of several neurotransmitters in the mammalian brain, we have characterised the effect of the GABA(B )receptor agonist baclofen on the release of [(3)H]-dopamine ([(3)H]-DA) from VTA slices of naïve rats and of rats pre-treated with nicotine. RESULTS: In naïve rats, baclofen concentration-dependently inhibited the electrically evoked release of [(3)H]-DA from the isolated VTA (EC(50 )= 0.103 μM, 95% CI = 0.043–0.249), without affecting the basal [(3)H]-monoamine overflow. This effect was mediated by activation of GABA(B )receptors as it was blocked by the selective receptor antagonist CGP55845A. Chronic administration of nicotine (0.4 mg kg(-1), s.c., for 14 days) affected neither the basal nor the electrically evoked release of [(3)H]-DA from VTA slices. However, the inhibitory effect of baclofen (10 μM) on the stimulated [(3)H]-monoamine overflow was abolished in rats pre-treated with nicotine as compared to saline-injected controls. CONCLUSIONS: Our results demonstrate that GABA(B )receptor activation reduces the release of DA from the rat VTA. In addition, a reduced sensitivity of VTA GABA(B )receptors appears to develop after chronic exposure to nicotine. The resulting disinhibition of VTA DA neurones might therefore contribute to the sensitised dopaminergic responses observed in the rat mesocorticolimbic system following repeated administration of nicotine

    GABAB receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Functional GABAB receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on GABAB receptors [11, 72]) are formed from the heterodimerization of two similar 7TM subunits termed GABAB1 and GABAB2 [11, 71, 28, 72, 85]. GABAB receptors are widespread in the CNS and regulate both pre- and postsynaptic activity. The GABAB1 subunit, when expressed alone, binds both antagonists and agonists, but the affinity of the latter is generally 10-100-fold less than for the native receptor. Co-expression of GABAB1 and GABAB2 subunits allows transport of GABAB1 to the cell surface and generates a functional receptor that can couple to signal transduction pathways such as high-voltage-activated Ca2+ channels (Cav2.1, Cav2.2), or inwardly rectifying potassium channels (Kir3) [12, 11, 5]. The GABAB1 subunit harbours the GABA (orthosteric)-binding site within an extracellular domain (ECD) venus flytrap module (VTM), whereas the GABAB2 subunit mediates G protein-coupled signalling [11, 71, 40, 39]. The two subunits interact by direct allosteric coupling [63], such that GABAB2 increases the affinity of GABAB1 for agonists and reciprocally GABAB1 facilitates the coupling of GABAB2 to G proteins [71, 54, 39]. GABAB1 and GABAB2 subunits assemble in a 1:1 stoichiometry by means of a coiled-coil interaction between α-helices within their carboxy-termini that masks an endoplasmic reticulum retention motif (RXRR) within the GABAB1 subunit but other domains of the proteins also contribute to their heteromerization [5, 71, 15]. Recent evidence indicates that higher order assemblies of GABAB receptor comprising dimers of heterodimers occur in recombinant expression systems and in vivo and that such complexes exhibit negative functional cooperativity between heterodimers [70, 22]. Adding further complexity, KCTD (potassium channel tetramerization proteins) 8, 12, 12b and 16 associate as tetramers with the carboxy terminus of the GABAB2 subunit to impart altered signalling kinetics and agonist potency to the receptor complex [84, 3, 79] and are reviewed by [73]. The molecular complexity of GABAB receptors is further increased through association with trafficking and effector proteins [Schwenk et al., 2016, Nature Neuroscience 19(2): 233-42] and reviewed by [69]. Four isoforms of the human GABAB1 subunit have been cloned. The predominant GABAB1a and GABAB1b isoforms, which are most prevalent in neonatal and adult brain tissue respectively, differ in their ECD sequences as a result of the use of alternative transcription initiation sites. GABAB1a-containing heterodimers localise to distal axons and mediate inhibition of glutamate release in the CA3-CA1 terminals, and GABA release onto the layer 5 pyramidal neurons, whereas GABAB1b-containing receptors occur within dendritic spines and mediate slow postsynaptic inhibition [75, 89]. Only the 1a and 1b variants are identified as components of native receptors [11]. Additional GABAB1 subunit isoforms have been described in rodents and humans [55] and reviewed by [5]

    GABAB receptors in GtoPdb v.2021.2

    Get PDF
    Functional GABAB receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on GABAB receptors [11, 71]) are formed from the heterodimerization of two similar 7TM subunits termed GABAB1 and GABAB2 [11, 70, 28, 71, 87]. GABAB receptors are widespread in the CNS and regulate both pre- and postsynaptic activity. The GABAB1 subunit, when expressed alone, binds both antagonists and agonists, but the affinity of the latter is generally 10-100-fold less than for the native receptor. Co-expression of GABAB1 and GABAB2 subunits allows transport of GABAB1 to the cell surface and generates a functional receptor that can couple to signal transduction pathways such as high-voltage-activated Ca2+ channels (Cav2.1, Cav2.2), or inwardly rectifying potassium channels (Kir3) [12, 11, 5]. The GABAB1 subunit harbours the GABA (orthosteric)-binding site within an extracellular domain (ECD) venus flytrap module (VTM), whereas the GABAB2 subunit mediates G protein-coupled signalling [11, 70, 40, 39]. The cryo-electron microscopy structures of the human full-length GABAB1-GABAB2 heterodimer have been solved in the inactive apo state, two intermediate agonist-bound forms and an active state in which the heterodimer is bound to an agonist and a positive allosteric modulator [81]. The positive allosteric modulator binds to the transmembrane dimerization interface and stabilizes the active state. Recent evidence indicates that higher order assemblies of GABAB receptor comprising dimers of heterodimers occur in recombinant expression systems and in vivo and that such complexes exhibit negative functional cooperativity between heterodimers [69, 22]. Adding further complexity, KCTD (potassium channel tetramerization proteins) 8, 12, 12b and 16 associate as tetramers with the carboxy terminus of the GABAB2 subunit to impart altered signalling kinetics and agonist potency to the receptor complex [86, 3, 79] and are reviewed by [72]. The molecular complexity of GABAB receptors is further increased through association with trafficking and effector proteins [80] and reviewed by [68]. The predominant GABAB1a and GABAB1b isoforms, which are most prevalent in neonatal and adult brain tissue respectively, differ in their ECD sequences as a result of the use of alternative transcription initiation sites. GABAB1a-containing heterodimers localise to distal axons and mediate inhibition of glutamate release in the CA3-CA1 terminals, and GABA release onto the layer 5 pyramidal neurons, whereas GABAB1b-containing receptors occur within dendritic spines and mediate slow postsynaptic inhibition [74, 91]. Amyloid precursor protein (APP) and soluble APP (sAPP) bind to the N- terminal sushi domain of the GABAB1a isoform to regulate axonal trafficking of GABAB receptors and release of neurotransmitters [76]

    Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    Polyacetylenes from Sardinian Oenanthe fistulosa: A Molecular Clue to risus sardonicus

    Get PDF
    An investigation of Oenanthe fistulosa from Sardinia afforded oenanthotoxin (1a) and dihydrooenanthotoxin (1b) from the roots and the diacetylenic epoxydiol 2 from the seeds. The absolute configuration of 1a and 1b was established as R by the modified Mosher's method, and the structure of 2 by chemical correlation with (+)-(3R,8S)-falcarindiol. Oenanthotoxin (1a) and dihydrooenanthotoxin (1b) were found to potently block GABAergic responses, providing a molecular rationale for the symptoms of poisoning from water-dropwort (Oenanthe crocata) and related plants. These observations bear relevance for a series of historical and ethnopharmacological observations on the identification of the Sardonic herb and the molecular details of the facial muscular contraction caused by its ingestion (risus sardonicus)

    Photo-antagonism of the GABAA receptor

    Get PDF
    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation

    OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting

    Get PDF
    Weather forecasts rely heavily on general circulation models of the atmosphere and other components of the Earth system. National meteorological and hydrological services and intergovernmental organizations, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), provide routine operational forecasts on a range of spatio-temporal scales by running these models at high resolution on state-of-the-art high-performance computing systems. Such operational forecasts are very demanding in terms of computing resources. To facilitate the use of a weather forecast model for research and training purposes outside the operational environment, ECMWF provides a portable version of its numerical weather forecast model, OpenIFS, for use by universities and other research institutes on their own computing systems. In this paper, we describe a new project (OpenIFS@home) that combines OpenIFS with a citizen science approach to involve the general public in helping conduct scientific experiments. Volunteers from across the world can run OpenIFS@home on their computers at home, and the results of these simulations can be combined into large forecast ensembles. The infrastructure of such distributed computing experiments is based on our experience and expertise with the climateprediction.net (https://www.climateprediction.net/, last access: 1 June 2021) and weather@home systems. In order to validate this first use of OpenIFS in a volunteer computing framework, we present results from ensembles of forecast simulations of Tropical Cyclone Karl from September 2016 studied during the NAWDEX field campaign. This cyclone underwent extratropical transition and intensified in mid-latitudes to give rise to an intense jet streak near Scotland and heavy rainfall over Norway. For the validation we use a 2000-member ensemble of OpenIFS run on the OpenIFS@home volunteer framework and a smaller ensemble of the size of operational forecasts using ECMWF's forecast model in 2016 run on the ECMWF supercomputer with the same horizontal resolution as OpenIFS@home. We present ensemble statistics that illustrate the reliability and accuracy of the OpenIFS@home forecasts and discuss the use of large ensembles in the context of forecasting extreme events.</p

    Vascular endothelial growth factor signaling requires glycine to promote angiogenesis

    Get PDF
    Peripheral vascular occlusive disease (PVOD) is a common manifestation of atherosclerosis, and it has a high rate of morbidity. Therapeutic angiogenesis would re-establish blood perfusion and rescue ischemic tissue. Vascular endothelial growth factor (VEGF) induces angiogenesis and can potentially be used to treat ischemic diseases, yet in clinical trials VEGF has not fulfilled its full potential with side effects. Whether amino acids promote angiogenesis and the molecular mechanisms are largely unknown. Here we showed that (1) Glycine significantly promoted angiogenesis both in vitro and in vivo and effectively protected mitochondrial function. (2) Activation of glycine transporter 1(GlyT1) induced by VEGF led to an increase in intracellular glycine. (3) Glycine directly bounded to voltage dependent anion channel 1 (VDAC1) on the mitochondrial outer membrane and inhibited its opening. These original results highlight glycine as a necessary mediator in VEGF signalling via the GlyT1-glycine-mTOR-VDAC1 axis pathway. Therefore, the findings in this study are of significance providing new mechanistic insights into angiogenesis and providing better understanding of glycine function in angiogenesis, which may provide valuable information for development of novel therapeutic targets for the treatment of angiogenic vascular disorders

    GABA Regulation of Burst Firing in Hippocampal Astrocyte Neural Circuit: A Biophysical Model

    Get PDF
    It is now widely accepted that glia cells and gamma-aminobutyric acidergic (GABA) interneurons dynamically regulate synaptic transmission and neuronal activity in time and space. This paper presents a biophysical model that captures the interaction between an astrocyte cell, a GABA interneuron and pre/postsynaptic neurons. Specifically, GABA released from a GABA interneuron triggers in astrocytes the release of calcium (Ca2+) from the endoplasmic reticulum via the inositol 1, 4, 5-trisphosphate (IP3) pathway. This results in gliotransmission which elevates the presynaptic transmission probability rate (PR) causing weight potentiation and a gradual increase in postsynaptic neuronal firing, that eventually stabilizes. However, by capturing the complex interactions between IP3, generated from both GABA and the 2-arachidonyl glycerol (2-AG) pathway, and PR, this paper shows that this interaction not only gives rise to an initial weight potentiation phase but also this phase is followed by postsynaptic bursting behavior. Moreover, the model will show that there is a presynaptic frequency range over which burst firing can occur. The proposed model offers a novel cellular level mechanism that may underpin both seizure-like activity and neuronal synchrony across different brain regions
    corecore