351 research outputs found

    EVALUATION OF ANTIFUNGAL ACTIVITY OF ESSENTIAL OIL OF Baccharis dracunculifolia DC. AGAINST THE YEAST OF THE SPECIES Candida albicans

    Get PDF
    Os produtos oriundos de plantas medicinais com propriedades antifĂșngicas tem se destacado. A disponibilidade de antifĂșngicos atualmente utilizados na clĂ­nica Ă© relativamente pequena, sendo muitas vezes ineficiente e com toxicidade elevada. A Candida albicans Ă© uma levedura que estĂĄ presente normalmente na microbiota humana. No entanto, quando a imunidade baixa ou apĂłs o uso de certos medicamentos, ela pode-se tornar patogĂȘnica e causar infecçÔes ao hospedeiro. Diante deste contexto, o presente trabalho visou avaliar “in vitro” o Ăłleo essencial de Baccharis dracunculifolia frente Ă  cepa da espĂ©cie Candida albicans. O Ăłleo foi extraĂ­do das folhas secas de B. dracunculifolia atravĂ©s do mĂ©todo de hidrodestilação, em aparelho de Clevenger, durante 7 horas, e apresentou  rendimento de 0,5%. O ensaio antifĂșngico foi realizado atravĂ©s do teste de difusĂŁo em disco e entĂŁo testado em diferentes concentraçÔes variando de 0,29 a 10 mg. O Ăłleo apresentou atividade antifĂșngica em uma Concentração InibitĂłria MĂ­nima de 10 mg. Pode-se concluir que o Ăłleo essencial de Baccharis dracunculifolia possui boa atividade antifĂșngica, o que pode auxiliar no desenvolvimento de novos fĂĄrmacos contra leveduras da espĂ©cie Candida albicans

    Calcium Sulfate and Platelet-Rich Plasma make a novel osteoinductive biomaterial for bone regeneration

    Get PDF
    BACKGROUND: With the present study we introduce a novel and simple biomaterial able to induce regeneration of bone. We theorized that nourishing a bone defect with calcium and with a large amount of activated platelets may initiate a series of biological processes that culminate in bone regeneration. Thus, we engineered CS-Platelet, a biomaterial based on the combination of Calcium Sulfate and Platelet-Rich Plasma in which Calcium Sulfate also acts as an activator of the platelets, therefore avoiding the need to activate the platelets with an agonist. METHODS: First, we tested CS-Platelet in heterotopic (muscle) and orthotopic (bone) bone regeneration bioassays. We then utilized CS-Platelet in a variety of dental and craniofacial clinical cases, where regeneration of bone was needed. RESULTS: The heterotopic bioassay showed formation of bone within the muscular tissue at the site of the implantation of CS-Platelet. Results of a quantitative orthotopic bioassay based on the rat calvaria critical size defect showed that only CS-Platelet and recombinant human BMP2 were able to induce a significant regeneration of bone. A non-human primate orthotopic bioassay also showed that CS-Platelet is completely resorbable. In all human clinical cases where CS-Platelet was used, a complete bone repair was achieved. CONCLUSION: This study showed that CS-Platelet is a novel biomaterial able to induce formation of bone in heterotopic and orthotopic sites, in orthotopic critical size bone defects, and in various clinical situations. The discovery of CS-Platelet may represent a cost-effective breakthrough in bone regenerative therapy and an alternative or an adjuvant to the current treatments

    Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study

    Get PDF
    BACKGROUND: Sepsis continues to be a major cause of death, disability, and health-care expenditure worldwide. Despite evidence suggesting that host genetics can influence sepsis outcomes, no specific loci have yet been convincingly replicated. The aim of this study was to identify genetic variants that influence sepsis survival. METHODS: We did a genome-wide association study in three independent cohorts of white adult patients admitted to intensive care units with sepsis, severe sepsis, or septic shock (as defined by the International Consensus Criteria) due to pneumonia or intra-abdominal infection (cohorts 1-3, n=2534 patients). The primary outcome was 28 day survival. Results for the cohort of patients with sepsis due to pneumonia were combined in a meta-analysis of 1553 patients from all three cohorts, of whom 359 died within 28 days of admission to the intensive-care unit. The most significantly associated single nucleotide polymorphisms (SNPs) were genotyped in a further 538 white patients with sepsis due to pneumonia (cohort 4), of whom 106 died. FINDINGS: In the genome-wide meta-analysis of three independent pneumonia cohorts (cohorts 1-3), common variants in the FER gene were strongly associated with survival (p=9·7 × 10(-8)). Further genotyping of the top associated SNP (rs4957796) in the additional cohort (cohort 4) resulted in a combined p value of 5·6 × 10(-8) (odds ratio 0·56, 95% CI 0·45-0·69). In a time-to-event analysis, each allele reduced the mortality over 28 days by 44% (hazard ratio for death 0·56, 95% CI 0·45-0·69; likelihood ratio test p=3·4 × 10(-9), after adjustment for age and stratification by cohort). Mortality was 9·5% in patients carrying the CC genotype, 15·2% in those carrying the TC genotype, and 25·3% in those carrying the TT genotype. No significant genetic associations were identified when patients with sepsis due to pneumonia and intra-abdominal infection were combined. INTERPRETATION: We have identified common variants in the FER gene that associate with a reduced risk of death from sepsis due to pneumonia. The FER gene and associated molecular pathways are potential novel targets for therapy or prevention and candidates for the development of biomarkers for risk stratification. FUNDING: European Commission and the Wellcome Trust

    Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-ÎșB and AP-1 signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (<it>Pleurotus ostreatus</it>) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 ÎŒg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.</p> <p>Results</p> <p>OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE<sub>2</sub>) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-ÎșB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS <it>in vivo</it>. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-Îł (IFN-Îł), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.</p> <p>Conclusions</p> <p>Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.</p

    Use of Genomic DNA as an Indirect Reference for Identifying Gender-Associated Transcripts in Morphologically Identical, but Chromosomally Distinct, Schistosoma mansoni Cercariae

    Get PDF
    BACKGROUND: The use of DNA microarray technology to study global Schistosoma gene expression has led to the rapid identification of novel biological processes, pathways or associations. Implementation of standardized DNA microarray protocols across laboratories would assist maximal interpretation of generated datasets and extend productive application of this technology. METHODOLOGY/PRINCIPAL FINDINGS: Utilizing a new Schistosoma mansoni oligonucleotide DNA microarray composed of 37,632 elements, we show that schistosome genomic DNA (gDNA) hybridizes with less variation compared to complex mixed pools of S. mansoni cDNA material (R = 0.993 for gDNA compared to R = 0.956 for cDNA during ‘self versus self’ hybridizations). Furthermore, these effects are species-specific, with S. japonicum or Mus musculus gDNA failing to bind significantly to S. mansoni oligonucleotide DNA microarrays (e.g R = 0.350 when S. mansoni gDNA is co-hybridized with S. japonicum gDNA). Increased median fluorescent intensities (209.9) were also observed for DNA microarray elements hybridized with S. mansoni gDNA compared to complex mixed pools of S. mansoni cDNA (112.2). Exploiting these valuable characteristics, S. mansoni gDNA was used in two-channel DNA microarray hybridization experiments as a common reference for indirect identification of gender-associated transcripts in cercariae, a schistosome life-stage in which there is no overt sexual dimorphism. This led to the identification of 2,648 gender-associated transcripts. When compared to the 780 gender-associated transcripts identified by hybridization experiments utilizing a two-channel direct method (co-hybridization of male and female cercariae cDNA), indirect methods using gDNA were far superior in identifying greater quantities of differentially expressed transcripts. Interestingly, both methods identified a concordant subset of 188 male-associated and 156 female-associated cercarial transcripts, respectively. Gene ontology classification of these differentially expressed transcripts revealed a greater diversity of categories in male cercariae. Quantitative real-time PCR analysis confirmed the DNA microarray results and supported the reliability of this platform for identifying gender-associated transcripts. CONCLUSIONS/SIGNIFICANCE: Schistosome gDNA displays characteristics highly suitable for the comparison of two-channel DNA microarray results obtained from experiments conducted independently across laboratories. The schistosome transcripts identified here demonstrate, for the first time, that gender-associated patterns of expression are already well established in the morphologically identical, but chromosomally distinct, cercariae stage

    Challenges and Opportunities in Finfish Nutrition

    Get PDF
    Much of the criticism leveled at aquaculture (e.g., dependency on animal-derived feedstuffs, nutrient-laden effluent discharges, and increased organic contamination in edible products) can be traced to the feeds in use. Accordingly, finfish nutritionists are being challenged to formulate feeds that not only meet the nutritional requirements of livestock but also minimize production costs, limit environmental impacts, and enhance product quality. These challenges not only add considerable complexity to finfish nutrition but also afford opportunities to avoid some of the mistakes made by other industries in the past. From a review of the current status of finfish nutrition with respect to major nutrient classes, we comment on future opportunities and promising avenues of research. Alternative protein sources, specifically those derived from marine bycatch, plants, and microbes, are discussed, as well as methods to facilitate their implementation in finfish feeds. Dietary lipid, its role in fish bioenergetics and physiology, and quality of aquaculture products is reviewed with special emphasis on alternative lipid sources and finishing diets. Carbohydrates and fiber are discussed in terms of nutrient-sparing, least-cost diet formulation and digestive physiology. Micronutrients are reviewed in terms of current knowledge of requirements and, along with other dietary immunostimulants, are given further consideration in a review of nutriceuticals and application in finfish feeds. The status of nutritional research in new aquaculture species is also outlined. By integrating classical approaches with emerging technologies, dietary formulations, and species, finfish nutritionists may identify means to increase production efficiency and sustainability and provide for the continued success of aquaculture

    Characterization of anticoagulant heparinoids by immunoprofiling

    Get PDF
    Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and–when additional saccharides are present–inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics
    • 

    corecore