158 research outputs found

    Does sediment composition sort kinorhynch communities?. An ecomorphological approach through geometric morphometrics

    Get PDF
    Ecomorphology studies the relationship between organisms’ morphology and environment features. To better understand whether the shape of the body and the appendages involved in the movement is correlated to sediment composition in meiofaunal organisms, we study the evolved morphological adaptations to environment in selected taxa of the phylum Kinorhyncha: the allomalorhagid families Dracoderidae and Pycnophyidae, and the cyclorhagid genus Echinoderes. The selected taxa include the most diverse groups of Kinorhyncha worldwide, representing the 75.5% of the total phylum diversity. Widened, plump bodies and lateral terminal spines may be adaptive for species living in coarse, more heterogeneous sediments, as they could maintain a more powerful musculature to actively displace the sediment grains applying a greater force. Conversely, slender, vermiform bodies and lateral terminal spines would represent an adaptation of species inhabiting fne, more homogeneous sediments where there would not be much need to exert a high force to displace the sediment particles, and a more vermiform shape would even favour the burrowing of the animal through the smaller interstices. The studied kinorhynch taxa would also be adapted to the higher velocity of the sea-water and the intense erosion and transportation of heterogeneous sediments by possessing more robust bodies, avoiding getting laid of substratum under these conditions. These fndings provide evolutionary evidence that body shape in the studied kinorhynch groups is adapted to environment

    Transcriptional profiling reveals functional links between RasGrf1 and Pttg1 in pancreatic beta cells

    Get PDF
    This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License .[Background]: Our prior characterization of RasGrf1 deficient mice uncovered significant defects in pancreatic islet count and size as well as beta cell development and signaling function, raising question about the mechanisms linking RasGrf1 to the generation of those >pancreatic> phenotypes. [Results]: Here, we compared the transcriptional profile of highly purified pancreatic islets from RasGrf1 KO mice to that of WT control animals using commercial oligonucleotide microarrays. RasGrf1 elimination resulted in differential gene expression of numerous components of MAPK- and Calcium-signaling pathways, suggesting a relevant contribution of this GEF to modulation of cellular signaling in the cell lineages integrating the pancreatic islets. Whereas the overall transcriptional profile of pancreatic islets was highly specific in comparison to other organs of the same KO mice, a significant specific repression of Pttg1 was a common transcriptional alteration shared with other tissues of neuroectodermal origin. This observation, together with the remarkable pancreatic phenotypic similarities between RasGrf1 KO and Pttg1 KO mice suggested the possibility of proximal functional regulatory links between RasGrf1 and Pttg1 in pancreatic cell lineages expressing these proteins. [Conclusions]: The specific transcriptional profile and signaling behavior of RasgGrf1 KO pancreatic islets, together with the dominance of Pttg1 over RasGrf1 with regards to the generation of these phenotypes in mouse pancreas, suggest that RasGrf1 is an important upstream component of signal transduction pathways regulating Pttg1 expression and controlling beta cell development and physiological responses.Work supported by grants FIS PI13/02846 and RTICC RD12/0036/0001 from Instituto de Salud Carlos III (ISCIII), and grant SA181U13 from JCyL, Spain. We are grateful to Dr. Douglas Lowy (National Cancer Institute, Bethesda, MD) for providing plasmid pBK-CMV RasGrf1 and to Dr. Shlomo Melmed (Cedars-Sinai Medical Center, Los Angeles, CA) for providing reporter plasmid pGL3-Pttg1 and the single PTTG1 KO mouse strain used in these studies.Peer Reviewe

    In depth analysis of the mechanism of action of metal-dependent sigma factors: characterization of CorE2 from Myxococcus xanthus

    Get PDF
    Extracytoplasmic function sigma factors represent the third pillar of signal-transduction mechanisms in bacteria. The variety of stimuli they recognize and mechanisms of action they use have allowed their classification into more than 50 groups. We have characterized CorE2 from Myxococcus xanthus, which belongs to group ECF44 and upregulates the expression of two genes when it is activated by cadmium and zinc. Sigma factors of this group contain a Cys-rich domain (CRD) at the C terminus which is essential for detecting metals. Point mutations at the six Cys residues of the CRD have revealed the contribution of each residue to CorE2 activity. Some of them are essential, while others are either dispensable or their mutations only slightly affect the activity of the protein. However, importantly, mutation of Cys174 completely shifts the specificity of CorE2 from cadmium to copper, indicating that the Cys arrangement of the CRD determines the metal specificity. Moreover, the conserved CxC motif located between the sigma2 domain and the sigma4.2 region has also been found to be essential for activity. The results presented here contribute to our understanding of the mechanism of action of metal-dependent sigma factors and help to define new common features of the members of this group of regulators.Spanish Government [CSD2009-00006, BFU2012-33248, 70% funded by FEDER]. Funding for open access charge: Grupo BIO318, Junta de Andalucía

    Supramolecular, spectroscopic and computational analysis of weak interactions in some thiosemicarbazones derived from 5-acetylbarbituric acid

    Get PDF
    A new series of 5-acetylbarbituric based thiosemicarbazones (TSC) named 5-acetylbarbituric hydrazine-1-carbothioamide (1), N-methyl-(5-acetylbarbituric)hydrazine-1-carbothioamide (2), N-ethyl-(5-acetylbarbituric)hydrazine-1-carbothioamide (3), N,N-dimethyl-(5-acetylbarbituric)hydrazine-1-carbothioamide (4), N'-piperidine-(5-acetylbarbituric)-1-carbothiohydrazide (5) and N'-hexamethyleneimine-(5-acetylbarbituric)-1-carbothiohydrazide (6), has been synthesized from 5-acetylbarbituric acid and N-unsubstituted/substituted thiosemicarbazides. The synthesized compounds were well characterized by elemental analyses, FT-IR, 1H, 13C NMR and mass spectroscopic methods. Three-dimensional molecular structures of three compounds (1⋅DMSO, 2 and 6⋅H2O) were determined by single crystal X-ray crystallography, and an analysis of their supramolecular structure was carried out. The supramolecular features of the X-ray structure were also studied using Hirshfeld surface analysis. Finally, H-bonding networks observed in the solid state X-ray structures of 1⋅DMSO, 2, and 6⋅H2O and unconventional π-stacking dimers in 6⋅H2O were further analyzed by DFT calculations in combination with molecular electrostatic potential surfaces and combined QTAIM/NCIplot computational toolsFinancial support from the Network of Excellence “Metallic Ions in Biological Systems” CTQ2017-90802-REDT [Ministerio de Economía y Competitividad (Spain) and European Regional Development Fund (EU)], and the Xunta de Galicia (Spain) [Rede de Excelencia MetalBIO ED431D 2017/01]. MICIU/AEI of Spain (project CTQ2017-85821-R FEDER) is also acknowledged for financial supportS

    Criterion-Related Validity of Field-Based Fitness Tests in Adults: A Systematic Review

    Get PDF
    We comprehensively assessed the criterion-related validity of existing field-based fitness tests used to indicate adult health (19-64 years, with no known pathologies). The medical electronic databases MEDLINE (via PubMed) and Web of Science (all databases) were screened for studies published up to July 2020. Each original study's methodological quality was classified as high, low and very low, according to the number of participants, the description of the study population, statistical analysis and systematic reviews which were appraised via the AMSTAR rating scale. Three evidence levels were constructed (strong, moderate and limited evidence) according to the number of studies and the consistency of the findings. We identified 101 original studies (50 of high quality) and five systematic reviews examining the criterion-related validity of field-based fitness tests in adults. Strong evidence indicated that the 20 m shuttle run, 1.5-mile, 12 min run/walk, YMCA step, 2 km walk and 6 min walk test are valid for estimating cardiorespiratory fitness; the handgrip strength test is valid for assessing hand maximal isometric strength; and the Biering-Sorensen test to evaluate the endurance strength of hip and back muscles; however, the sit-and reach test, and its different versions, and the toe-to-touch test are not valid for assessing hamstring and lower back flexibility. We found moderate evidence supporting that the 20 m square shuttle run test is a valid test for estimating cardiorespiratory fitness. Other field-based fitness tests presented limited evidence, mainly due to few studies. We developed an evidence-based proposal of the most valid field-based fitness tests in healthy adults aged 19-64 years old.This project was supported by Ministry of Economy, Industry and Competitiveness in the 2017 call for R&D Projects of the State Program for Research, Development and Innovation Oriented to the Challenges of the Company; National Plan for Scientific and Technical Research and of Innovation 2017-2020 (DEP2017-88043-R); and the Regional Government of Andalusia and University of Cadiz: Research and Knowledge Transfer Fund (PPIT-FPI19)

    Differential role of the RasGEFs Sos1 and Sos2 in mouse skin homeostasis and carcinogenesis

    Get PDF
    Using Sos1 knockout (Sos1-KO), Sos2-KO, and Sos1/2 double-knockout (Sos1/2-DKO) mice, we assessed the functional role of Sos1 and Sos2 in skin homeostasis under physiological and/or pathological conditions. Sos1 depletion resulted in significant alterations of skin homeostasis, including reduced keratinocyte proliferation, altered hair follicle and blood vessel integrity in dermis, and reduced adipose tissue in hypodermis. These defects worsened significantly when both Sos1 and Sos2 were absent. Simultaneous Sos1/2 disruption led to severe impairment of the ability to repair skin wounds, as well as to almost complete ablation of the neutrophil-mediated inflammatory response in the injury site. Furthermore, Sos1 disruption delayed the onset of tumor initiation, decreased tumor growth, and prevented malignant progression of papillomas in a DMBA (7,12-dimethylbenz[α]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate)-induced skin carcinogenesis model. Finally, Sos1 depletion in preexisting chemically induced papillomas resulted also in decreased tumor growth, probably linked to significantly reduced underlying keratinocyte proliferation. Our data unveil novel, distinctive mechanistic roles of Sos 1 and Sos2 in physiological control of skin homeostasis and wound repair, as well as in pathological development of chemically induced skin tumors. These observations underscore the essential role of Sos proteins in cellular proliferation and migration and support the consideration of these RasGEFs as potential biomarkers/therapy targets in Ras-driven epidermal tumors.This study was supported by grants FIS PI16/02137 from ISCIII (MINECO), SA043U16 (UIC 076) from JCyL, and AECC Spain (to E.S.); by MINECO grant SAF2015-66015-R; and by MSyC grants ISCIII-RETIC RD12/0036/0009, PIE 15/00076, and CB/16/00228 (to J.M.P.). This research was cofinanced by FEDER fund
    corecore