38 research outputs found

    Measuring Recoiling Nucleons From the Nucleus with the Future Electron Ion Collider

    Get PDF
    Short range correlated nucleon-nucleon (NN) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner (“spectator-nucleon tagging”). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the laboratory frame by the momentum of the ion beam. To determine the feasibility of these studies with the planned EIC detector configuration, we have simulated quasielastic scattering for two electron and ion beam energy configurations: 5 GeV e− and 41 GeV/A ions, and 10 GeV e− and 110 GeV/A ions. We show that the knocked-out and recoiling nucleons can be detected over a wide range of initial nucleon momenta. We also show that these measurements can achieve much larger momentum transfers than current fixed target experiments. By detecting both low and high initial-momentum nucleons, the planned EIC has the potential to provide the data that should allow scientists to definitively show if the European Muon Collaboration effect and short-range correlation are connected, and to improve our understanding of color transparency

    The US Electron Ion Collider Accelerator Designs

    Get PDF
    With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    ATHENA detector proposal - a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity.This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
    corecore