779 research outputs found
Quantum-Limited Measurement and Information in Mesoscopic Detectors
We formulate general conditions necessary for a linear-response detector to
reach the quantum limit of measurement efficiency, where the
measurement-induced dephasing rate takes on its minimum possible value. These
conditions are applicable to both non-interacting and interacting systems. We
assess the status of these requirements in an arbitrary non-interacting
scattering based detector, identifying the symmetries of the scattering matrix
needed to reach the quantum limit. We show that these conditions are necessary
to prevent the existence of information in the detector which is not extracted
in the measurement process.Comment: 13 pages, 1 figur
Properties of hyperons in chiral perturbation theory
The development of chiral perturbation theory in hyperon phenomenology has
been troubled due to power-counting subtleties and to a possible slow
convergence. Furthermore, the presence of baryon-resonances, e.g. the
lowest-lying decuplet, complicates the approach, and the inclusion of their
effects may become necessary. Recently, we have shown that a fairly good
convergence is possible using a renormalization prescription of the
loop-divergencies which recovers the power counting, is covariant and
consistent with analyticity. Moreover, we have systematically incorporated the
decuplet resonances taking care of both power-counting and
problems. A model-independent understanding of diferent properties including
the magnetic moments of the baryon-octet, the electromagnetic structure of the
decuplet resonances and the hyperon vector coupling , has been
successfully achieved within this approach. We will briefly review these
developments and stress the important role they play for an accurate
determination of the Cabibbo-Kobayashi-Maskawa matrix element from
hyperon semileptonic decay data.Comment: To appear in HypX Proceeding
Strong 3D correlations in vortex system of Bi2212:Pb
The experimental study of magnetic flux penetration under crossed magnetic
fields in Bi2212:Pb single crystal performed by magnetooptic technique (MO)
reveals remarkable field penetration pattern alteration (flux configuration
change) and superconducting current anisotropy enhancement by the in-plane
field. The anisotropy increases with the temperature rise up to . At an abrupt change in the flux behavior is found; the
correlation between the in-plane magnetic field and the out-of-plane magnetic
flux penetration disappears. No correlation is observed for . The
transition temperature does not depend on the magnetic field strength.
The observed flux penetration anisotropy is considered as an evidence of a
strong 3D - correlation between pancake vortices in different CuO planes at . This enables understanding of a remarkable pinning observed in
Bi2212:Pb at low temperatures.Comment: 8 pages, 9 figure
A novel determination of the local dark matter density
We present a novel study on the problem of constructing mass models for the
Milky Way, concentrating on features regarding the dark matter halo component.
We have considered a variegated sample of dynamical observables for the Galaxy,
including several results which have appeared recently, and studied a 7- or
8-dimensional parameter space - defining the Galaxy model - by implementing a
Bayesian approach to the parameter estimation based on a Markov Chain Monte
Carlo method. The main result of this analysis is a novel determination of the
local dark matter halo density which, assuming spherical symmetry and either an
Einasto or an NFW density profile is found to be around 0.39 GeV cm with
a 1- error bar of about 7%; more precisely we find a for the Einasto profile and for the NFW. This is in contrast to the
standard assumption that is about 0.3 GeV cm with an
uncertainty of a factor of 2 to 3. A very precise determination of the local
halo density is very important for interpreting direct dark matter detection
experiments. Indeed the results we produced, together with the recent accurate
determination of the local circular velocity, should be very useful to
considerably narrow astrophysical uncertainties on direct dark matter
detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde
Learning difficulties : a portuguese perspective of a universal issue
In this article we present findings of a study that was conducted with the purpose of deepening the knowledge about the field of learning difficulties in Portugal. Therefore, within these findings we will discuss across several cultural boundaries, themes related with the existence of learning difficulties as a construct, the terminology, the political, social and scientific influences on the field, and the models of identification and of ongoing school support for students. While addressing the above-mentioned themes we will draw attention to the different, yet converging, international understandings of learning difficulties
Molecular dynamics study of orientational order and rotational melting in clusters of TeF 6
Molecular dynamics simulations of the behavior of molecules in crystalline clusters of TeF 6 were carried out on systems of 100, 150, 250, and 350 molecules. Several diagnostic functions were applied to investigate whether rotational melting occurred before translational melting. These functions included the coefficient of rotational diffusion D θ ( T ), the “orientational Lindemann index” δ θ ( T ), the “orientational angular distribution function” Q (θ, T ), and the “orientational pair-correlation function” g θ ( r, T ). All indicators implied that rotational melting occurred before translational melting, that it began with the outermost molecules, and that its onset for smaller clusters was at lower temperatures than for larger clusters. Results also showed that the rotational transition coincided with the transition from a lower symmetry phase (monoclinic) to cubic, a phenomenon that had been noted by others to occur with some regularity for systems of globular molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43961/1/10053_2005_Article_BF01426586.pd
Predictive powers of chiral perturbation theory in Compton scattering off protons
We study low-energy nucleon Compton scattering in the framework of baryon
chiral perturbation theory (BPT) with pion, nucleon, and (1232)
degrees of freedom, up to and including the next-to-next-to-leading order
(NNLO). We include the effects of order , and , with
MeV the -resonance excitation energy. These are
all "predictive" powers in the sense that no unknown low-energy constants enter
until at least one order higher (i.e, ). Estimating the theoretical
uncertainty on the basis of natural size for effects, we find that
uncertainty of such a NNLO result is comparable to the uncertainty of the
present experimental data for low-energy Compton scattering. We find an
excellent agreement with the experimental cross section data up to at least the
pion-production threshold. Nevertheless, for the proton's magnetic
polarizability we obtain a value of fm, in
significant disagreement with the current PDG value. Unlike the previous
PT studies of Compton scattering, we perform the calculations in a
manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB)
expansion. The difference between the lowest order HBPT and BPT
results for polarizabilities is found to be appreciable. We discuss the chiral
behavior of proton polarizabilities in both HBPT and BPT with the
hope to confront it with lattice QCD calculations in a near future. In studying
some of the polarized observables, we identify the regime where their naive
low-energy expansion begins to break down, thus addressing the forthcoming
precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
Two-proton correlations from 158 AGeV Pb+Pb central collisions
The two-proton correlation function at midrapidity from Pb+Pb central
collisions at 158 AGeV has been measured by the NA49 experiment. The results
are compared to model predictions from static thermal Gaussian proton source
distributions and transport models RQMD and VENUS. An effective proton source
size is determined by minimizing CHI-square/ndf between the correlation
functions of the data and those calculated for the Gaussian sources, yielding
3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are
consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added
about the structure on the tail of the correlation function. The systematic
error is revised. To appear in Phys. Lett.
Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon
We present first data on event-by-event fluctuations in the average
transverse momentum of charged particles produced in Pb+Pb collisions at the
CERN SPS. This measurement provides previously unavailable information allowing
sensitive tests of microscopic and thermodynamic collision models and to search
for fluctuations expected to occur in the vicinity of the predicted QCD phase
transition. We find that the observed variance of the event-by-event average
transverse momentum is consistent with independent particle production modified
by the known two-particle correlations due to quantum statistics and final
state interactions and folded with the resolution of the NA49 apparatus. For
two specific models of non-statistical fluctuations in transverse momentum
limits are derived in terms of fluctuation amplitude. We show that a
significant part of the parameter space for a model of isospin fluctuations
predicted as a consequence of chiral symmetry restoration in a non-equilibrium
scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.
- …