454 research outputs found

    Sea surface temperature of the coastal zones of France

    Get PDF
    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery

    Sea surface temperature of the coastal zones of France

    Get PDF
    The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent

    Impact of sodium aluminate on the hydration process of alkali-activated ground granulated blast furnace slag

    Get PDF
    In the present investigation, the effect of the presence of highly soluble alumina source (sodium aluminate, NaAlO2) on Ground Granulated Blast furnace Slag (GGBS) hydration was considered. The GGBS was alkali-activated with sodium hydroxide (NaOH) or sodium carbonate (Na2CO3). The impact on the evolution on the setting time, hydration kinetics and strength development was first considered. In the case of NaOH-activated mixes, the presence of the alumina source led to the delay in setting and an extension of the induction period. The alumina additive led then to an extension of the workable time of the binder. For instance the initial setting time was extended from 30 min to more than 6 hours when adding 1% by weight of NaAlO2. The strength development was also significantly improved with addition of NaAlO2, both at early age and long term. In contrast, addition of NaAlO2 to the Na2CO3-activated mixes led to almost complete cessation of hydration (no measurable strength) within the whole dosage rate interval considered (0.1% to 2% of NaAlO2). Different techniques were used to investigate the impact of NaAlO2 on the hydration products development, including XRD, SEM image analysis and 27Al/29Si/23Na high-resolution NMR spectroscopy. It was found that the presence of the highly soluble alumina source led to rapid precipitation of Afm phases. It is suspected that, due to the low pH level in the case of the Na2CO3-activated mixes, the calcium ions are mainly distributed near the slag grain surfaces. The Afm phases may then mainly precipitate on the slag grains leading hydration blockage. Actually only Afm phases and Gaylussite were detected in the case of NaAlO2 blended Na2CO3-blended mixes

    Automatic detection of optical signatures within and around floating Tonga - Fiji pumice rafts using MODIS, VIIRS, and OLCI Satellite Sensors

    Get PDF
    An underwater volcanic eruption off the Vava’u island group in Tonga on 7 August 2019 resulted in the creation of floating pumice on the ocean’s surface extending over an area of 150 km2. The pumice’s far-reaching effects from its origin in the Tonga region to Fiji and the methods of automatic detection using satellite imagery are described, making it possible to track the westward drift of the pumice raft over 43 days. Level 2 Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), Sentinel-3 Ocean and Land Color Instrument (OLCI), and Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) imagery of sea surface temperature, chlorophyll-a concentration, quasi-surface (i.e., Rayleigh-corrected) reflectance, and remote sensing reflectance were used to distinguish consolidated and fragmented rafts as well as discolored and mesotrophic waters. The rafts were detected by a 1 to 3.5 °C enhancement in the MODIS-derived “sea surface temperature” due to the emissivity difference of the raft material. Large plumes of discolored waters, characterized by higher satellite reflectance/backscattering of particles in the blue than surrounding waters (and corresponding to either submersed pumice or associated white minerals), were associated with the rafts. The discolored waters had relatively lower chlorophyll-a concentration, but this was artificial, resulting from the higher blue/red reflectance ratio caused by the reflective pumice particles. Mesotrophic waters were scarce in the region of the pumice rafts, presumably due to the absence of phytoplanktonic response to a silicium-rich pumice environment in these tropical oligotrophic environments. As beach accumulations around Pacific islands surrounded by coral shoals are a recurrent phenomenon that finds its origin far east in the ocean along the Tongan trench, monitoring the events from space, as demonstrated for the 7 August 2019 eruption, might help mitigate their potential economic impacts

    AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods

    Get PDF
    Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard

    Methodology for Jointly Assessing Myocardial Infarct Extent and Regional Contraction in 3-D CMRI

    Full text link
    Automated extraction of quantitative parameters from Cardiac Magnetic Resonance Images (CMRI) is crucial for the management of patients with myocardial infarct. This work proposes a post-processing procedure to jointly analyze Cine and Delayed-Enhanced (DE) acquisitions in order to provide an automatic quantification of myocardial contraction and enhancement parameters and a study of their relationship. For that purpose, the following processes are performed: 1) DE/Cine temporal synchronization and 3D scan alignment, 2) 3D DE/Cine rigid registration in a region about the heart, 3) segmentation of the myocardium on Cine MRI and superimposition of the epicardial and endocardial contours on the DE images, 4) quantification of the Myocardial Infarct Extent (MIE), 5) study of the regional contractile function using a new index, the Amplitude to Time Ratio (ATR). The whole procedure was applied to 10 patients with clinically proven myocardial infarction. The comparison between the MIE and the visually assessed regional function scores demonstrated that the MIE is highly related to the severity of the wall motion abnormality. In addition, it was shown that the newly developed regional myocardial contraction parameter (ATR) decreases significantly in delayed enhanced regions. This largely automated approach enables a combined study of regional MIE and left ventricular function

    Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect

    Get PDF
    The launch of ADEOS in August 1996 with POLDER, TOMS, and OCTS instruments on board and the future launch of EOS-AM 1 in mid-1998 with MODIS and MISR instruments on board start a new era in remote sensing of aerosol as part of a new remote sensing of the whole Earth system (see a list of the acronyms in the Notation section of the paper). These platforms will be followed by other international platforms with unique aerosol sensing capability, some still in this century (e.g., ENVISAT in 1999). These international spaceborne multispectral, multiangular, and polarization measurements, combined for the first time with international automatic, routine monitoring of aerosol from the ground, are expected to form a quantum leap in our ability to observe the highly variable global aerosol. This new capability is contrasted with present single-channel techniques for AVHRR, Meteosat, and GOES that although poorly calibrated and poorly characterized already generated important aerosol global maps and regional transport assessments. The new data will improve significantly atmospheric corrections for the aerosol effect on remote sensing of the oceans and be used to generate first real-time atmospheric corrections over the land. This special issue summarizes the science behind this change in remote sensing, and the sensitivity studies and applications of the new algorithms to data from present satellite and aircraft instruments. Background information and a summary of a critical discussion that took place in a workshop devoted to this topic is given in this introductory paper. In the discussion it was concluded that the anticipated remote sensing of aerosol simultaneously from several space platforms with different observation strategies, together with continuous validations around the world, is expected to be of significant importance to test remote sensing approaches to characterize the complex and highly variable aerosol field. So far, we have only partial understanding of the information content and accuracy of the radiative transfer inversion of aerosol information from the satellite data, due to lack of sufficient theoretical analysis and applications to proper field data. This limitation will make the anticipated new data even more interesting and challenging. A main concern is the present inadequate ability to sense aerosol absorption, from space or from the ground. Absorption is a critical parameter for climate studies and atmospheric corrections. Over oceans, main concerns are the effects of white caps and dust on the correction scheme. Future improvement in aerosol retrieval and atmospheric corrections will require better climatology of the aerosol properties and understanding of the effects of mixed composition and shape of the particles. The main ingredient missing in the planned remote sensing of aerosol are spaceborne and ground-based lidar observations of the aerosol profiles

    Seasonal forcing of summer dissolved inorganic carbon and chlorophyll a on the western shelf of the Antarctic Peninsula

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C03024, doi:10.1029/2009JC005267.The Southern Ocean is a climatically sensitive region that plays an important role in the regional and global modulation of atmospheric CO2. Based on satellite-derived sea ice data, wind and cloudiness estimates from numerical models (National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis), and in situ measurements of surface (0–20 m depth) chlorophyll a (ChlSurf) and dissolved inorganic carbon (DICSurf) concentration, we show sea ice concentration from June to November and spring wind patterns between 1979 and 2006 had a significant influence on midsummer (January) primary productivity and carbonate chemistry for the Western Shelf of the Antarctic Peninsula (WAP, 64°–68°S, 63.4°–73.3°W). In general, strong (>3.5 m s−1) and persistent (>2 months) northerly winds during the previous spring were associated with relatively high (monthly mean > 2 mg m−3) ChlSurf and low (monthly mean 200 m depth) “winter-like” DIC on the WAP.This research was supported by NSF OPP grants 0217282 to HWD at the Virginia Institute of Marine Science and 0823101 to HWD at the MBL

    Satellite Radiation Products for Ocean Biology and Biogeochemistry: Needs, State-of-the-Art, Gaps, Development Priorities, and Opportunities

    Get PDF
    Knowing the spatial and temporal distribution of the underwater light field, i.e., the spectral and angular structure of the radiant intensity at any point in the water column, is essential to understanding the biogeochemical processes that control the composition and evolution of aquatic ecosystems and their impact on climate and reaction to climate change. At present, only a few properties are reliably retrieved from space, either directly or via water-leaving radiance. Existing satellite products are limited to planar photosynthetically available radiation (PAR) and ultraviolet (UV) irradiance above the surface and diffuse attenuation coefficient. Examples of operational products are provided, and their advantages and drawbacks are examined. The usefulness and convenience of these products notwithstanding, there is a need, as expressed by the user community, for other products, i.e., sub-surface planar and scalar fluxes, average cosine, spectral fluxes (UV to visible), diurnal fluxes, absorbed fraction of PAR by live algae (APAR), surface albedo, vertical attenuation, and heating rate, and for associating uncertainties to any product on a pixel-by-pixel basis. Methodologies to obtain the new products are qualitatively discussed in view of most recent scientific knowledge and current and future satellite missions, and specific algorithms are presented for some new products, namely sub-surface fluxes and average cosine. A strategy and roadmap (short, medium, and long term) for usage and development priorities is provided, taking into account needs and readiness level. Combining observations from satellites overpassing at different times and geostationary satellites should be pursued to improve the quality of daily-integrated radiation fields, and products should be generated without gaps to provide boundary conditions for general circulation and biogeochemical models. Examples of new products, i.e., daily scalar PAR below the surface, daily average cosine for PAR, and sub-surface spectral scalar fluxes are presented. A procedure to estimate algorithm uncertainties in the total uncertainty budget for above-surface daily PAR, based on radiative simulations for expected situations, is described. In the future, space-borne lidars with ocean profiling capability offer the best hope for improving our knowledge of sub-surface fields. To maximize temporal coverage, space agencies should consider placing ocean-color instruments in L1 orbit, where the sunlit part of the Earth can be frequently observed
    corecore