186 research outputs found

    Chapter Vascular Tissue Development and Regeneration in the Model Plant Arabidopsis

    Get PDF
    Development of vascular tissue is a remarkable example of intercellular communication and coordinated development involving hormonal signaling and tissue polarity. Thus far, studies on vascular patterning and regeneration have been conducted mainly in trees—woody plants—with a well-developed layer of vascular cambium and secondary tissues. Trees are difficult to use as genetic models, i.e., due to long generation time, unstable environmental conditions, and lack of available mutants and transgenic lines. Therefore, the use of the main genetic model plant Arabidopsis thaliana (L.) Heynh., with a wealth of available marker and transgenic lines, provides a unique opportunity to address molecular mechanism of vascular tissue formation and regeneration. With specific treatments, the tiny weed Arabidopsis can serve as a model to understand the growth of mighty trees and interconnect a tree physiology with molecular genetics and cell biology of Arabidopsis

    Targeted cell ablation-based insights into wound healing and restorative patterning

    Get PDF
    Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration

    Transport Optimisation Module for Traffic Monitoring System

    Get PDF
    Import 22/07/2015Cílem této práce bylo vytvoření modulu optimalizace přeprav, jehož součástí je rozhraní pro práci s algoritmy knihovny Jsprit a pro zadání vstupů do těchto algoritmů z prostředí frameworku .NET a také práce s mapou OpenLayers -- vykreslování bodů a tras do mapy. Knihovnu Jsprit jsem pomocí nástroje IKVM zpracoval tak, aby ji bylo možné použít z prostředí .NET, což se povedlo.The aim of this thesis was to create transport optimisation module, that consists of interface for working with algorithms from the Jsprit library and for inputing values into these algorithms from .NET framework and also of working with OpenLayers map -- drawing points and strokes to the map. I treated the Jsprit library by IKVM tool in order to be able to use it from the .NET environment and I was successful.460 - Katedra informatikydobř

    Reorientation of cortical microtubule arrays in the hypocotyl of arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling

    Get PDF
    Cortical microtubule arrays in elongating epidermal cells in both the root and stem of plants have the propensity of dynamic reorientations that are correlated with the activation or inhibition of growth. Factors regulating plant growth, among them the hormone auxin, have been recognized as regulators of microtubule array orientations. Some previous work in the field has aimed at elucidating the causal relationship between cell growth, the signaling of auxin or other growth-regulating factors, and microtubule array reorientations, with various conclusions. Here, we revisit this problem of causality with a comprehensive set of experiments in Arabidopsis thaliana, using the now available pharmacological and genetic tools. We use isolated, auxin-depleted hypocotyls, an experimental system allowing for full control of both growth and auxin signaling. We demonstrate that reorientation of microtubules is not directly triggered by an auxin signal during growth activation. Instead, reorientation is triggered by the activation of the growth process itself and is auxin-independent in its nature. We discuss these findings in the context of previous relevant work, including that on the mechanical regulation of microtubule array orientation

    Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters

    Get PDF
    * Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown. * In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells. * Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization. * These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants

    Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis

    Get PDF
    Plant survival depends on vascular tissues, which originate in a self‐organizing manner as strands of cells co‐directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN‐dependent auxin transport and nuclear, TIR1/AFB‐mediated auxin signaling. We also show that leaf venation and auxin‐mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts

    Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls

    Get PDF
    Gravitropism is an adaptive response that orients plant growth parallel to the gravity vector. Asymmetric distribution of the phytohormone auxin is a necessary prerequisite to the tropic bending both in roots and shoots. During hypocotyl gravitropic response, the PIN3 auxin transporter polarizes within gravity-sensing cells to redirect intercellular auxin fluxes. First gravity-induced PIN3 polarization to the bottom cell mem- branes leads to the auxin accumulation at the lower side of the organ, initiating bending and, later, auxin feedback-mediated repolarization restores symmetric auxin distribution to terminate bending. Here, we per- formed a forward genetic screen to identify regulators of both PIN3 polarization events during gravitropic response. We searched for mutants with defective PIN3 polarizations based on easy-to-score morphological outputs of decreased or increased gravity-induced hypocotyl bending. We identified the number of hypocotyl reduced bending (hrb) and hypocotyl hyperbending (hhb) mutants, revealing that reduced bending corre- lated typically with defective gravity-induced PIN3 relocation whereas all analyzed hhb mutants showed defects in the second, auxin-mediated PIN3 relocation. Next-generation sequencing-aided mutation map- ping identified several candidate genes, including SCARECROW and ACTIN2, revealing roles of endodermis specification and actin cytoskeleton in the respective gravity- and auxin-induced PIN polarization events. The hypocotyl gravitropism screen thus promises to provide novel insights into mechanisms underlying cell polarity and plant adaptive development
    corecore