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Plants as sessile organisms are constantly under attack by

herbivores, rough environmental situations, or mechanical

pressure. These challenges often lead to the induction of

wounds or destruction of already specified and developed

tissues. Additionally, wounding makes plants vulnerable to

invasion by pathogens, which is why wound signalling often

triggers specific defence responses. To stay competitive or,

eventually, survive under these circumstances, plants need to

regenerate efficiently, which in rigid, tissue migration-

incompatible plant tissues requires post-embryonic

patterning and organogenesis. Now, several studies used

laser-assisted single cell ablation in the Arabidopsis root tip as

a minimal wounding proxy. Here, we discuss their findings and

put them into context of a broader spectrum of wound

signalling, pathogen responses and tissue as well as organ

regeneration.
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Introduction
Well-studied mechanisms of wound healing in animals

rely strongly on targeted migration of cells to the

wound area. In plant tissues, this is not possible, since

plant cells are encapsulated by their rigid cell walls.

Thus, regeneration in plants has to rely on oriented cell

divisions, acquisition of new cell fates and on direc-

tional cell elongation. Early wounding studies in the

19th and beginning of 20th century provided initial

phenomenology of regeneration [1,2,3�] but only in the

last decade approaches mainly involving the surgical

removal of the root tip provided much insight into the

mechanism of regeneration and accompanied tran-

scriptional reprograming [4,5��]. However, the cellular

processes and, in particular, molecular mechanisms
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underlying this regeneration response remain poorly

characterized. Recent studies employing local, tar-

geted cell elimination in the roots of the model plant

Arabidopsis thaliana promise to provide fresh insights

into the still mysterious mechanism of wound healing

in plants.

Non-targeted wounding studies
Most of the earlier wounding experiments involved sur-

gically induced, rather large-scale injuries in different

tissues of various plant models. Originally, these studies

involved simple observation of processes following the

wounding and, later, mainly with the use of Arabidopsis
root, they employed global transcriptome analysis and

more sophisticated use of molecular markers and other

genetic tools.

Cellular responses during regeneration

The most obvious response of surrounding cells to

wounding is (re)entry into mitosis, also in differentiated

cells that have left the cell cycle. These cells dedifferen-

tiate, divide, and form the new cell walls parallel to the

wound site ultimately filling the wound with new cells

[2,6,3�]. In the root meristem, where cells are constantly

in the cell cycle, wounding enhances cell divisions in cells

close to the wound site; these wound-activated root cells

subsequently lose their identity and adopt embryonic/

stem cell-like identity (Figure 1a) [5��,7]. Although these

processes have been well described, neither the signal

that activates the neighboring cells nor the mechanism

coordinating which cells are responsive, has been

identified.

Notably, even when the whole stem cell niche of the

root is removed, the root meristem pattern is re-estab-

lished de novo with correct arrangement of the lost cell

types (Figure 1a) [4]. Single cell sequencing revealed

that the newly generated cells quickly adopt the

required new cell types, and this is partly dependent

on the spatially separated maxima of two major phyto-

hormones, auxin and cytokinin (Figure 1a). However,

this de novo cell fate acquisition occurred (albeit with

less efficiency) also when these maxima were disrupted,

which suggests so far unknown intercellular positional

signalling that coordinates the re-patterning of the root

tip [5��]. This highlights the superior ability of plant

organs to fully regenerate and restore correct tissue

patterns.
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Wounding triggers primary wounding signals, phytohormone signalling and complex regeneration responses. (a) Cutting off the root tip including

the stem cell niche leads to a complete rebuilding of the missing structures by the following processes: (i) Dedifferentiation in cells close to the

wound and adoption of embryonic/stem cell programs [5��,7]; (ii) Increase in division rates in cells close to the wound and switch in division planes

[7]; (iii) Establishment of new accumulation zones for the phytohormones cytokinin (purple) and auxin (yellow) to define the new stem cell niche

[5��]; (iv) Finally, de novo establishment of correct cell types in newly generated cells to restore the original tissue pattern [4,5��]. (b) Wounding on

a cellular level means the disruption of the cellular envelope – cell wall (black) and plasma membrane (blue). Cell wall integrity sensing is

presumably involved in wound signalling [20�,21]. Wound signalling quickly manifests as a Ca2+ wave which spreads through neighboring tissues

[11,12]. The Ca2+ wave relates to the production of ROS in the apoplast and causes itself an oxidative burst inside and outside the cells [13–15].

Together, Ca2+ and ROS trigger multiple downstream signalling events at the wound site and in distal organs to induce immune responses

[12,14,20�]. (c) Wounding induces production of various phytohormones with different dynamics. Jasmonate accumulation starts seconds after the

wounding [50] and is perceived by CORONATINE INSENSITIVE1 (COI1) [51]. This leads to the activation of MYC2/3/4 transcription factors

regulating downstream genes [52]. Ethylene accumulates 30 min after wounding by an increased activity of its biosynthesis genes [24] and acts

through ETHYLENE-INSENSITIVE PROTEIN 2/3 (EIN2/3) transcription factors [53,20�]. ABA accumulation after wounding occurs after several

hours in desiccated tissues and presumably functions in maintaining healthy plant physiology rather than immune responses [26]. Wounding

induces changes in auxin accumulation and signalling after removal of the whole root tip; this involves induction of YUCCA biosynthetic

components that play an important role in rebuilding destroyed structures [25,46].
Primary wound signalling

For the efficient initiation of defence responses and

regeneration, plants need to quickly recognize the inva-

ders or the induced destruction and signal to the
www.sciencedirect.com 
immediate surroundings and the rest of the plant

[8�,9,10]. The first known downstream signalling events

that occur after herbivore attack or wounding are Ca2+

wave initiation [11,12] and an accumulation of reactive
Current Opinion in Plant Biology 2019, 52:124–130
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oxygen species (ROS) (Figure 1b) [13–15]. Wounding and

pathogen associated elicitors also induce the production

of small peptides that act as defence activators [16], for

example, Pep1 and Pep2, which activate downstream

immune responses against root pathogens [17–19].

Although these processes are well established to occur

after the wounding/herbivore attack and mediate

immune responses in plants (for a detailed review see

Ref.: [20�]), they are triggered by an initial wound signal

that is still unknown. Cell wall integrity sensing by

constant measurement of the wall composition [20�,21]
is thought to be a crucial element of wound detection.

However, no direct, mechanistic connection between the

known components of the cell wall integrity sensing and

the wound/herbivore responses has been established.

Unsurprisingly, phytohormones, as universal endogenous

signals, are induced with different dynamics after attack

to contribute to the balance of growth and immunity/

defence [22]. Historically, by extracting organic com-

pounds from wound sites, the signalling compound trau-

matin was isolated which accelerates the wound healing

when exogenously applied [3�]. Similarly, wounding

induces jasmonic acid (JA) [23], ethylene (Et) [24] and

less directly, auxin [25] and abscisic acid (ABA)

(Figure 1c) [26,27]. While the biosynthetic pathways

for most of these phytohormones are known, the exact

production sites and the signalling mechanism underlying

their activation, have not been investigated.

Wounding by targeted cell elimination
Recent reports have made use of targeted elimination of a

single cell or small group of cells coupled with state-of-

the-art live imaging allowing for more precise characteri-

zation of the wound responses and regeneration

processes.

Laser ablation technique

In the 90 s, the UV laser ablation technique was intro-

duced allowing for elimination of single cells. Originally,

this was used to study cell-to-cell signalling and pattern-

ing mechanisms rather than as a tool to induce wounding

and study regeneration. This technique has the advantage

of removing a cell with spatial and temporal preciseness

[28�,29�], in contrast to genetic [30] or chemical ablations

[31��,32��]. Different types of lasers on different imaging

setups [28�,29�,31��,33,34��] have been used with propi-

dium iodide staining which stains cell walls, allow iden-

tification of dead cells and also pre-sensitizes cells for

ablation [35]. This allowed the first live observation of

wound healing responses in real time and in situ [32��].

Cellular responses during regeneration

The root meristem is a tissue where cells are constantly in

the cell cycle to proliferate for a sustained growth. Cell

elimination dramatically accelerates division rates of
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adjacent cells predominately at its inner adjacent side,

as the time required for one division is reduced from 18 to

5–12 hours (depending on the cell type) (Figure 2c).

These ‘restorative divisions’ involve a change in division

planes from anticlinal (perpendicular to the growth axis)

to periclinal (parallel to the growth axis) allowing for

efficient replacement of the dead cells in the wound from

the inside. Earlier studies showed that also in the stem

cell niche, ablated cells are replaced by irregular divisions

of adjacent cells [28�]. Outside of the stem cell niche, in

differentiating cells, stem cell programs aid the regener-

ation process as seen by the re-activation of the endoder-

mis/cortex (SHR/SCR and CYCD6;1) or the lateral root

cap/epidermis (FEZ and SMB) stem cell regulators

(Figure 2c) [32��]. Additionally, PLETHORA transcrip-

tion regulators expressed in a decreasing gradient from

the stem cell niche and associated with root stem cell

activity [36] appear to endow cells with the competence

to induce restorative divisions outside of the stem cell

niche [32��].

Already the earlier ablation experiments suggested that

cells in the root adopt their fate depending on the tissue

context [28�,29�]. This is manifested dramatically during

restorative divisions of any cell type. After the division

plane switch, the inner daughter cell, which stays in the

cell file it originated from, retains its identity. Remark-

ably, the outer daughter cell rapidly adopts the cell

identity of the eliminated cell, which it replaces

(Figure 2c) [32��].

The restorative divisions, which require accelerated cell

cycle progression, division plane switch and finally cell

fate change of the daughter cells, appear to be very robust

and likely dependent on multiple redundant stem cell

program-dependent and independent mechanisms. How-

ever, what signal triggers these divisions and what mech-

anism restricts them to cells only directly adjacent to the

wound, remains elusive.

Primary wound signalling

Similar to herbivore attacks, wounding of single cells in

the root meristem induces Ca2+ waves in the surrounding

tissue. However, harmed cells exhibit a greater Ca2+

influx with an increased duration which is translated by

a novel Ca2+-responsive protease, metacaspase MC4, into

the rapid processing and release of Pep1 peptide. Even-

tually, the secreted Pep1 reaches the surface of neighbor-

ing cells and starts signalling through PEPR1/2 receptors

to activate defence-related genes (Figure 2b) [34��].

Ablation of cells outside the root meristem (in the elon-

gation zone) also triggers a Ca2+ wave and an increase in

ROS accumulation in cells close to the wound site.

Similar to previous studies [13], this Ca2+ wave and its

propagation partly depend on enzymatic ROS production

in the apoplast [37��]. These phenomena also coincide
www.sciencedirect.com
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Figure 2
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Single cell ablation in the Arabidopsis root meristem triggers multiple local and regional wounding responses. (a) Ablation of cortex cells in the

elongation zone triggers the induction of Ca2+, ROS, ethylene, and membrane depolarization. The increase in Ca2+ influx after ablation is

www.sciencedirect.com Current Opinion in Plant Biology 2019, 52:124–130
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with a membrane depolarization close to the ablation site

which probably comes from changed ion fluxes, like Ca2

+and other available ions (Figure 2a) [37��].

Ablation experiments in the shoot apical meristem induce

similar Ca2+ waves, which are required for the repolarization

of the auxin efflux transporter PIN1 away from the wounded

tissues [38], consistent with previously established impor-

tance of Ca2+ signalling for PIN polarity in roots [39].

Additionally, microtubules rearrange in the same cells after

ablation as a consequence of a changed mechanical stresses,

but this seems to be independent of the Ca2+ waves, indi-

cating more complex and yet unknown mechanosensitive

signalling mechanisms responsive to wounding [38].

Involvement of phytohormones

As expected, multiple phytohormones are involved in

coordinating regenerative processes following wounding

but their exact role and interactions are far from clarified.

Cell ablation or infection with root-invading nematodes,

which can lead to the specific removal of single cells in the

root, leads to the increase of the transcriptional ethylene

response marker ACS6 as early as three hours after ablation.

Defence against these invaders depends on ethylene sig-

nalling through EIN2 [37��,40] and this triggering of the

ethylene signalling partly depends on the Ca2+ wave and

ROS production by apoplast-localized oxidases. Overall,

these observations reveal an important role of ethylene in

the root immune and wound response (Figure 2a) [37��].

Jasmonates (JA), phytohormones typically associated with

plant immunity, are induced around wounds specifically

in the central root meristem as early as 30 s after the

ablation (Figure 2d). Similarly, nematode infestation or

root growing through rough soil inducs JA [41��]. Pending

evidence to the contrary, it seems JA response is not

induced in root tissues other than the root meristem

[37��].
(Figure 2 Legend Continued) dependent on ROS production in the apopla

polarization (1.5 s after ablation). Additionally, it induces an accumulation of

Ca2+ influx and ROS production contribute to the ethylene signalling inducti

three hours after ablation. Eventually, ethylene signalling via EIN2 increases

epidermis cells in the transition zone triggers a Ca2+ influx that spreads thro

depending on the distance from the harmed cell. Harmed cells (grey) exhibi

cells (orange) and cells further away (white). Strong influx and complete des

inactive zMC4, which cleaves the PRECURSOR OF PEP1 (PROPEP1) into P

the cytosol to be perceived by the PEPR1 and PEPR2 receptors at the cell 

meristem triggers restorative divisions to replace the eliminated cells. These

induced by the activation of stem cell programs (orange nuclei; here: SHR –

They include the switch of the division plane from anticlinal to periclinal, and

eliminated cells to eventually regenerate the disrupted tissue pattern [32��]. 

30 s which is perceived by COI1 to activate MYC2, a JA-dependent transcr

expression around the wound site [41��]. ERF115 is also activated by its JA

signalling of auxin [41��], ROS [49], and brassinosteroids (BL) [47,48]. In abl

cells directly adjacent to the killed cell [31��,32��]. ERF115 can bind to RETI

the division rate in the quiescent centre and the stem cell niche [41��]. Few 

PSK5, might be involved in the acceleration of the cell cycle progression [4

tissue regeneration after single cell ablation as well as whole root tip remov
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Auxin has been implicated among many other processes,

also in regulation of division plane orientation, cell fate

(re)specification [42] and for the maintenance of the stem

cell niche in the root meristem centre [43]. Removal of

the root tip triggers a strong auxin accumulation above the

ablated cells, presumably due to a disruption of the

intercellular auxin flow, to induce replacement of

the meristem centre [44]. Chilling stress induces natural

death in root tip cells, which thereby block auxin trans-

port anatomically. The resulting auxin accumulation

helps maintaining the meristem centre during the stress

[45]. Increased auxin biosynthesis, in contrast, occurs in

wounded leaves [25] and root stumps after meristem

removal [46] and is crucial for the efficient tissue re-

establishment. However, it remains unknown how

wound-responsive auxin transport, biosynthesis or signal-

ling play a role in local regenerative processes.

Downstream transcriptional regulations

Besides the above-mentioned glimpses into wound-trig-

gered signalling processes, little is known about the

downstream mechanisms leading to regeneration. One

of the few identified components is the ETHYLENE

RESPONSE FACTOR 115 (ERF115), a transcription

factor required for the efficient initiation of restorative

divisions [31��,32��], and its close homologue and

upstream regulator ERF109 [41��]. Without wounding,

the ERF115 expression domain is usually restricted to the

rarely occurring cell divisions in the quiescent centre,

where it is controlled by brassinosteroids [47,48], but it

can be slightly increased by exogenous application of

ROS, auxin, and JA [41��,49]. In some cell types after

wounding, ERF115 becomes upregulated in a JA-depen-

dent manner during restorative divisions in cells directly

adjacent to the wound (Figure 2d) [41��,31��]. It remains a

mystery how such spatially restricted ERF115 induction

is achieved by rather broadly spreading signals, exactly

which factors are involved in cell types where ERF115 is
st by RBOH enzymes and allows the fast change in membrane

 ROS around the wound that occurs �6 min after the ablation. Both,

on by an increased ACC SYNTHASE 6 (ACS6) expression starting

 the resistance against nematode infection [37��]. (b) Laser ablation of

ughout the adjacent tissue but results in different amplitudes

t a stronger Ca2+ influx than those directly adjacent to the eliminated

truction of membrane integrity activate METACASPASE4 (MC4) from

ep1. By this, it becomes translocated from the vacuolar membrane to

surface of neighboring (orange) cells [34��]. (c) Ablation in the root

 divisions happen predominately in the inner adjacent cells. They are

 CYCD6;1) and an accelerated progression through the cell cycle.

 the newly generated outer daughter cells adopt the cell fate of the

(d) Ablations in the stem cell niche trigger a jasmonate induction within

iption factor. MYC2 binds to the promoter of ERF115 to enhance its

/MYC2-dependent homologue ERF109 [41��] and by downstream

ations outside the stem cell niche, ERF115 expression is confined to

NOBLASTOMA-RELATED1 (RBR1) and inhibit its activity to regulate

downstream targets of ERF115 have been identified. One of them,

7]. Eventually, ERF115 transcription factor activity contributes greatly to

al [31��,32��,41��]. Yellow thunderbolts indicate UV laser ablation.
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not induced and which downstream targets of ERF115

mediate the regeneration.

Conclusions
Several recent studies using the single cell ablation allowed

identifying wound response processes at different levels:

(i.) local – cells directly adjacent to the wounds, (ii.) regional

– cell groups in close proximity, or (iii.) systemic – thewhole

tissue in the same organ or in completely different parts of

the plants. Comparable responses after cell ablation, nem-

atode infestation or naturally occurring wounding suggest

that laser-assisted cell elimination can be used to study

mechanism of wound healing.

Multiple signals have been identified to be involved in the

response to wounding, but the nature of the primary wound

signal which activates the adjacent cells remains completely

elusive, along with most of the downstream regeneration

mechanisms. Further studies, building up on these initial

findings and combining laser-assisted cell elimination with

live imaging, forward genetic screens and single cell tran-

scriptomics will allow us to get detailed molecular insights of

what is happening at the local, regional, and systemic levels

and how different signalling mechanisms cooperatively con-

tribute toward wound healing. These studies not only will

reveal mechanisms of tissue regeneration but also help us to

understand the general mechanisms of positional informa-

tion-based tissue patterning.
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