472 research outputs found

    Nodes and Arcs: Concept Map, Semiotics, and Knowledge Organization.

    Get PDF
    Purpose – The purpose of the research reported here is to improve comprehension of the socially-negotiated identity of concepts in the domain of knowledge organization. Because knowledge organization as a domain has as its focus the order of concepts, both from a theoretical perspective and from an applied perspective, it is important to understand how the domain itself understands the meaning of a concept. Design/methodology/approach – The paper provides an empirical demonstration of how the domain itself understands the meaning of a concept. The paper employs content analysis to demonstrate the ways in which concepts are portrayed in KO concept maps as signs, and they are subjected to evaluative semiotic analysis as a way to understand their meaning. The frame was the entire population of formal proceedings in knowledge organization – all proceedings of the International Society for Knowledge Organization’s international conferences (1990-2010) and those of the annual classification workshops of the Special Interest Group for Classification Research of the American Society for Information Science and Technology (SIG/CR). Findings – A total of 344 concept maps were analyzed. There was no discernible chronological pattern. Most concept maps were created by authors who were professors from the USA, Germany, France, or Canada. Roughly half were judged to contain semiotic content. Peirceian semiotics predominated, and tended to convey greater granularity and complexity in conceptual terminology. Nodes could be identified as anchors of conceptual clusters in the domain; the arcs were identifiable as verbal relationship indicators. Saussurian concept maps were more applied than theoretical; Peirceian concept maps had more theoretical content. Originality/value – The paper demonstrates important empirical evidence about the coherence of the domain of knowledge organization. Core values are conveyed across time through the concept maps in this population of conference paper

    Breaching the Blood-Brain Barrier as a Gate to Psychiatric Disorder

    Get PDF
    The mechanisms underlying the development and progression of psychiatric illnesses are only partially known. Clinical data suggest blood-brain barrier (BBB) breakdown and inflammation are involved in some patients groups. Here we put forward the “BBB hypothesis” and abnormal blood-brain communication as key mechanisms leading to neuronal dysfunction underlying disturbed cognition, mood, and behavior. Based on accumulating clinical data and animal experiments, we propose that events within the “neurovascular unit” are initiated by a focal BBB breakdown, and are associated with dysfunction of brain astrocytes, a local inflammatory response, pathological synaptic plasticity, and increased network connectivity. Our hypothesis should be validated in animal models of psychiatric diseases and BBB breakdown. Recently developed imaging approaches open the opportunity to challenge our hypothesis in patients. We propose that molecular mechanisms controlling BBB permeability, astrocytic functions, and inflammation may become novel targets for the prevention and treatment of psychiatric disorders

    Bioenergetic mechanisms of seizure control

    Get PDF
    Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control

    Min-Rank Conjecture for Log-Depth Circuits

    Get PDF
    A completion of an m-by-n matrix A with entries in {0,1,*} is obtained by setting all *-entries to constants 0 or 1. A system of semi-linear equations over GF(2) has the form Mx=f(x), where M is a completion of A and f:{0,1}^n --> {0,1}^m is an operator, the i-th coordinate of which can only depend on variables corresponding to *-entries in the i-th row of A. We conjecture that no such system can have more than 2^{n-c\cdot mr(A)} solutions, where c>0 is an absolute constant and mr(A) is the smallest rank over GF(2) of a completion of A. The conjecture is related to an old problem of proving super-linear lower bounds on the size of log-depth boolean circuits computing linear operators x --> Mx. The conjecture is also a generalization of a classical question about how much larger can non-linear codes be than linear ones. We prove some special cases of the conjecture and establish some structural properties of solution sets.Comment: 22 pages, to appear in: J. Comput.Syst.Sci

    Finding Cycles and Trees in Sublinear Time

    Full text link
    We present sublinear-time (randomized) algorithms for finding simple cycles of length at least k3k\geq 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being CkC_k-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., Ω(1)\Omega(1)-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time \tildeO(\sqrt{N}), where NN denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of NN-vertex graphs can be tested with one-sided error within time complexity \tildeO(\poly(1/\e)\cdot\sqrt{N}). This matches the known Ω(N)\Omega(\sqrt{N}) query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter \e. For any constant k3k\geq3, we extend this result to testing whether the input graph has a simple cycle of length at least kk. On the other hand, for any fixed tree TT, we show that TT-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter \e. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in o(N)o(\sqrt{N}) complexity.Comment: Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided vs Two-Sided Error Probability Updated versio
    corecore