1,794 research outputs found

    Palindromic Length of Words with Many Periodic Palindromes

    Full text link
    The palindromic length PL(v)\text{PL}(v) of a finite word vv is the minimal number of palindromes whose concatenation is equal to vv. In 2013, Frid, Puzynina, and Zamboni conjectured that: If ww is an infinite word and kk is an integer such that PL(u)k\text{PL}(u)\leq k for every factor uu of ww then ww is ultimately periodic. Suppose that ww is an infinite word and kk is an integer such PL(u)k\text{PL}(u)\leq k for every factor uu of ww. Let Ω(w,k)\Omega(w,k) be the set of all factors uu of ww that have more than k1uk\sqrt[k]{k^{-1}\vert u\vert} palindromic prefixes. We show that Ω(w,k)\Omega(w,k) is an infinite set and we show that for each positive integer jj there are palindromes a,ba,b and a word uΩ(w,k)u\in \Omega(w,k) such that (ab)j(ab)^j is a factor of uu and bb is nonempty. Note that (ab)j(ab)^j is a periodic word and (ab)ia(ab)^ia is a palindrome for each iji\leq j. These results justify the following question: What is the palindromic length of a concatenation of a suffix of bb and a periodic word (ab)j(ab)^j with "many" periodic palindromes? It is known that PL(uv)PL(u)PL(v)\lvert\text{PL}(uv)-\text{PL}(u)\rvert\leq \text{PL}(v), where uu and vv are nonempty words. The main result of our article shows that if a,ba,b are palindromes, bb is nonempty, uu is a nonempty suffix of bb, ab\vert ab\vert is the minimal period of abaaba, and jj is a positive integer with j3PL(u)j\geq3\text{PL}(u) then PL(u(ab)j)PL(u)0\text{PL}(u(ab)^j)-\text{PL}(u)\geq 0

    Canonical Representatives of Morphic Permutations

    Get PDF
    An infinite permutation can be defined as a linear ordering of the set of natural numbers. In particular, an infinite permutation can be constructed with an aperiodic infinite word over {0,,q1}\{0,\ldots,q-1\} as the lexicographic order of the shifts of the word. In this paper, we discuss the question if an infinite permutation defined this way admits a canonical representative, that is, can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that a canonical representative exists if and only if the word is uniquely ergodic, and that is why we use the term ergodic permutations. We also discuss ways to construct the canonical representative of a permutation defined by a morphic word and generalize the construction of Makarov, 2009, for the Thue-Morse permutation to a wider class of infinite words.Comment: Springer. WORDS 2015, Sep 2015, Kiel, Germany. Combinatorics on Words: 10th International Conference. arXiv admin note: text overlap with arXiv:1503.0618

    Palindromic Decompositions with Gaps and Errors

    Full text link
    Identifying palindromes in sequences has been an interesting line of research in combinatorics on words and also in computational biology, after the discovery of the relation of palindromes in the DNA sequence with the HIV virus. Efficient algorithms for the factorization of sequences into palindromes and maximal palindromes have been devised in recent years. We extend these studies by allowing gaps in decompositions and errors in palindromes, and also imposing a lower bound to the length of acceptable palindromes. We first present an algorithm for obtaining a palindromic decomposition of a string of length n with the minimal total gap length in time O(n log n * g) and space O(n g), where g is the number of allowed gaps in the decomposition. We then consider a decomposition of the string in maximal \delta-palindromes (i.e. palindromes with \delta errors under the edit or Hamming distance) and g allowed gaps. We present an algorithm to obtain such a decomposition with the minimal total gap length in time O(n (g + \delta)) and space O(n g).Comment: accepted to CSR 201

    Is Climate-Smart Agriculture effective? A review of selected cases

    Get PDF
    Climate-Smart Agriculture (CSA) is an approach to address the interlinked challenges of food security and climate change, and has three objectives: (1) sustainably increasing agricultural productivity, to support equitable increases in farm incomes, food security and development; (2) adapting and building resilience of agricultural and food security systems to climate change at multiple levels; and (3) reducing greenhouse gas emissions from agriculture (including crops, livestock and fisheries). This paper examines 19 CSA case studies, to assess their effectiveness in achieving the stated objectives of CSA, while also assessing other cobenefits, economic costs and benefits, barriers to adoption, success factors, and gender and social inclusion issues. The analysis concludes that CSA interventions can be highly effective, achieving the three CSA objectives, while also generating additional benefits in a costeffective and inclusive manner. However, this depends on context specific project design and implementation, for which institutional capacity is key. The paper also identifies serious gaps in data availability and comparability, which restricts further analysis

    Building development and roads: implications for the distribution of stone curlews across the Brecks

    Get PDF
    Background: Substantial new housing and infrastructure development planned within England has the potential to conflict with the nature conservation interests of protected sites. The Breckland area of eastern England (the Brecks) is designated as a Special Protection Area for a number of bird species, including the stone curlew (for which it holds more than 60% of the UK total population). We explore the effect of buildings and roads on the spatial distribution of stone curlew nests across the Brecks in order to inform strategic development plans to avoid adverse effects on such European protected sites. Methodology: Using data across all years (and subsets of years) over the period 1988 – 2006 but restricted to habitat areas of arable land with suitable soils, we assessed nest density in relation to the distances to nearest settlements and to major roads. Measures of the local density of nearby buildings, roads and traffic levels were assessed using normal kernel distance-weighting functions. Quasi-Poisson generalised linear mixed models allowing for spatial auto-correlation were fitted. Results: Significantly lower densities of stone curlew nests were found at distances up to 1500m from settlements, and distances up to 1000m or more from major (trunk) roads. The best fitting models involved optimally distance-weighted variables for the extent of nearby buildings and the trunk road traffic levels. Significance : The results and predictions from this study of past data suggests there is cause for concern that future housing development and associated road infrastructure within the Breckland area could have negative impacts on the nesting stone curlew population. Given the strict legal protection afforded to the SPA the planning and conservation bodies have subsequently agreed precautionary restrictions on building development within the distances identified and used the modelling predictions to agree mitigation measures for proposed trunk road developments

    Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

    Get PDF
    In this work, we consider the Combinatorial RNA Design problem, a minimal instance of the RNA design problem which aims at finding a sequence that admits a given target as its unique base pair maximizing structure. We provide complete characterizations for the structures that can be designed using restricted alphabets. Under a classic four-letter alphabet, we provide a complete characterization of designable structures without unpaired bases. When unpaired bases are allowed, we provide partial characterizations for classes of designable/undesignable structures, and show that the class of designable structures is closed under the stutter operation. Membership of a given structure to any of the classes can be tested in linear time and, for positive instances, a solution can be found in linear time. Finally, we consider a structure-approximating version of the problem that allows to extend bands (helices) and, assuming that the input structure avoids two motifs, we provide a linear-time algorithm that produces a designable structure with at most twice more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun 2015, Ischia Island, Italy. LNCS, 201

    Insulin pens dribble from the tip of the needle after injection

    Get PDF

    Insulin pens dribble from the tip of the needle after injection

    Get PDF
    corecore