308 research outputs found

    Recovery and separation of precious metals from space

    Get PDF
    During the past year a viable procedure centered around centrifugal partition chromatography (CPC), a multistage liquid-liquid partitioning technique for the separation of precious metals (Pt, Pd, Rh, Ir, Os, Ru), was developed. Stable and inexpensive ligands that can be readily recycled to achieve the separations of the precious metals were identified. The separation methods developed so far yield three separate fractions: Pt, Pd, and Rh-Ir. The Rh-Ir pair can be separated in a subsequent run. The total amount of precious metals separated in a single experiment varied from 1 to 50 mg. The factors affecting the efficiencies of these separations were studied. The kinetics of the decomposition of the complex and the ion pair have a major bearing on these efficiencies, with slow kinetics resulting in poor efficiencies. The methods for the improvement of the efficiencies were also investigated. For example, significant improvement in the efficiencies and separation times for Pt and Pd were achieved by the use of chloride gradient in the mobile phase. Two papers were published and talks were presented on our work at the FACSS meeting in Anaheim, Oct. 1991, and at the Pittsburgh Conference in New Orleans, Mar. 1992

    Barkhausen noise from zigzag domain walls

    Full text link
    We investigate the Barkhausen noise in ferromagnetic thin films with zigzag domain walls. We use a cellular automaton model that describes the motion of a zigzag domain wall in an impure ferromagnetic quasi-two dimensional sample with in-plane uniaxial magnetization at zero temperature, driven by an external magnetic field. The main ingredients of this model are the dipolar spin-spin interactions and the anisotropy energy. A power law behavior with a cutoff is found for the probability distributions of size, duration and correlation length of the Barkhausen avalanches, and the critical exponents are in agreement with the available experiments. The link between the size and the duration of the avalanches is analyzed too, and a power law behavior is found for the average size of an avalanche as a function of its duration.Comment: 11 pages, 12 figure

    Probing a non-biaxial behavior of infinitely thin hard platelets

    Full text link
    We give a criterion to test a non-biaxial behavior of infinitely thin hard platelets of D2hD_{2h} symmetry based upon the components of three order parameter tensors. We investigated the nematic behavior of monodisperse infinitely thin rectangular hard platelet systems by using the criterion. Starting with a square platelet system, and we compared it with rectangular platelet systems of various aspect ratios. For each system, we performed equilibration runs by using isobaric Monte Carlo simulations. Each system did not show a biaxial nematic behavior but a uniaxial nematic one, despite of the shape anisotropy of those platelets. The relationship between effective diameters by simulations and theoretical effective diameters of the above systems was also determined.Comment: Submitted to JPS

    Spin-dependent transport in metal/semiconductor tunnel junctions

    Get PDF
    This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate spin-polarized carriers. A transport model is presented that takes account of carrier capture in the semiconductor surface states, and describes the semiconductor surface in terms of a spin-dependent energy distribution function. The so-called surface spin-splitting can be calculated from the balance of the polarized electron and hole flow in the semiconductor subsurface region, the polarized tunnelling current across the tunnel barrier between the magnetic material and the semiconductor surface, and the spin relaxation at the semiconductor surface. Measurements are presented of the circular-polarization-dependent photocurrent (the so-called helicity asymmetry) in thin-film tunnel junctions of Co/Al2O3/GaAs. In the absence of a tunnel barrier, the helicity asymmetry is caused by magneto-optical effects (magnetic circular dichroism). In the case where a tunnel barrier is present, the data cannot be explained by magneto-optical effects alone; the deviations provide evidence that spin-polarized tunnelling due to optical spin orientation occurs. In Co/τ-MnAl/AlAs/GaAs junctions no deviations from the magneto-optical effects are observed, most probably due to the weak spin polarization of τ-MnAl along the tunnelling direction; the latter is corroborated by bandstructure calculations. Finally, the application of photoexcited GaAs for spin-polarized tunnelling in a scanning tunnelling microscope is discussed.

    Surface alignment, anchoring transitions, optical properties, and topological defects in the thermotropic nematic phase of organo-siloxane tetrapodes

    Get PDF
    We address the status of oxadiazole mesogens, C7 and C12, reported to show the biaxial nematic phase, by exploring material aspects (chemical stability, surface anchoring, optical and dielectric properties, topological defects) linked to the type of nematic order. We demonstrate that the isogyres splitting in conoscopic patterns of homeotropic state depends on sample thickness and is associated with variations of molecular tilt along the normal to substrates. We observe isolated topological point defects (boojums and hedgehogs), as well as nonsingular “escaped” disclinations pertinent only to the uniaxial nematic order. Our conclusion is that C7 and C12 feature only a uniaxial nematic phase and the apparent biaxiality is caused by surface effects

    Magnetoplasmonic design rules for active magneto-optics

    Full text link
    Light polarization rotators and non-reciprocal optical isolators are essential building blocks in photonics technology. These macroscopic passive devices are commonly based on magneto-optical Faraday and Kerr polarization rotation. Magnetoplasmonics - the combination of magnetism and plasmonics - is a promising route to bring these devices to the nanoscale. We introduce design rules for highly tunable active magnetoplasmonic elements in which we can tailor the amplitude and sign of the Kerr response over a broad spectral range
    corecore