30 research outputs found
Wideband 67-116 GHz cryogenic receiver development for ALMA Band 2
The Atacama Large Millimeter/sub-millimeter Array (ALMA) is already
revolutionising our understanding of the Universe. However, ALMA is not yet
equipped with all of its originally planned receiver bands, which will allow it
to observe over the full range of frequencies from 35-950 GHz accessible
through the Earth's atmosphere. In particular Band 2 (67-90 GHz) has not yet
been approved for construction. Recent technological developments in cryogenic
monolithic microwave integrated circuit (MMIC) high electron mobility
transistor (HEMT) amplifier and orthomode transducer (OMT) design provide an
opportunity to extend the originally planned on-sky bandwidth, combining ALMA
Bands 2 and 3 into one receiver cartridge covering 67-116 GHz.
The IF band definition for the ALMA project took place two decades ago, when
8 GHz of on-sky bandwidth per polarisation channel was an ambitious goal. The
new receiver design we present here allows the opportunity to expand ALMA's
wideband capabilities, anticipating future upgrades across the entire
observatory. Expanding ALMA's instantaneous bandwidth is a high priority, and
provides a number of observational advantages, including lower noise in
continuum observations, the ability to probe larger portions of an astronomical
spectrum for, e.g., widely spaced molecular transitions, and the ability to
scan efficiently in frequency space to perform surveys where the redshift or
chemical complexity of the object is not known a priori. Wider IF bandwidth
also reduces uncertainties in calibration and continuum subtraction that might
otherwise compromise science objectives.
Here we provide an overview of the component development and overall design
for this wideband 67-116 GHz cryogenic receiver cartridge, designed to operate
from the Band 2 receiver cartridge slot in the current ALMA front end receiver
cryostat.Comment: 8 pages, proceedings from the 8th ESA Workshop on Millimetre-Wave
Technology and Applications
(https://atpi.eventsair.com/QuickEventWebsitePortal/millimetre-wave/mm-wave
Orion-KL Observations with the Extended Tuning Range of the New SEPIA660 APEX Facility Instrument
During Science Verification of the new SEPIA660 facility receiver at APEX, we carried out a shallow line survey of the archetypal Kleinmann- Low Nebula in the Orion star forming region (Orion-KL). These observations cover the tuning range towards the band edges, which has recently been extended beyond ALMA Band 9 specifications. At these frequencies, atmospheric transmission is very low but still sufficient to detect bright lines in Orion-KL. We present the collected spectra and compare with surveys from the literature, demonstrating the capabilities of the instrument
ALMA Band 5 receiver cartridge. Design, performance, and commissioning
We describe the design, performance, and commissioning results for the new ALMA Band 5 receiver channel, 163–211 GHz, which is in the final stage of full deployment and expected to be available for observations in 2018. This manuscript provides the description of the new ALMA Band 5 receiver cartridge and serves as a reference for observers using the ALMA Band 5 receiver for observations. At the time of writing this paper, the ALMA Band 5 Production Consortium consisting of NOVA Instrumentation group, based in Groningen, NL, and GARD in Sweden have produced and delivered to ALMA Observatory over 60 receiver cartridges. All 60 cartridges fulfil the new more stringent specifications for Band 5 and demonstrate excellent noise temperatures, typically below 45 K single sideband (SSB) at 4 K detector physical temperature and below 35 K SSB at 3.5 K (typical for operation at the ALMA Frontend), providing the average sideband rejection better than 15 dB, and the integrated cross-polarization level better than –25 dB. The 70 warm cartridge assemblies, hosting Band 5 local oscillator and DC bias electronics, have been produced and delivered to ALMA by NRAO. The commissioning results confirm the excellent performance of the receivers
A new 3 mm band receiver for the Onsala 20 m antenna
A new receiver for the Onsala 20 m antenna with the possibility of being equipped with 3 mm and 4 mm bands has been built and the 3 mm channel has been commissioned during the Spring 2014. For single-dish operation, the receiver uses an innovative on-source/off-source optical switch. In combination with additional optical components and within the same optical layout, the switch provides two calibration loads (for the 3 mm and 4 mm channels), sideband rejection measurement, and tuning possibilities. The optical layout of the receiver employs all cold (4 K) offset elliptical mirrors for both channels, whereas the on-off switch employs flat mirrors only. The 3 mm channel employs a sideband separation (2SB) dual polarization receiver with orthomode transducer (OMT), 4–8 GHz intermediate frequency (IF), x 2pol x upper and lower sidebands (USB + LSB). The cryostat has four optical windows made of high density polyethylene (HDPE) with anti-reflection corrugations, two for the signal and two for each frequency band cold load. The cryostat uses a two-stage cryocooler produced by Sumitomo HI RDK 408D2 with anti-vibration suspension of the cold-head to minimize impact of the vibrations on the receiver stability. The local oscillator (LO) system is based on a Gunn oscillator with aphase lock loop (PLL) and four mechanical tuners for broadband operation, providing independently tunable LO power for each polarization. This paper provides a technical description of the receiver and its technology and could be useful for instrumentation engineers and observers using the Onsala 20 m telescope
SEPIA - a new single pixel receiver at the APEX telescope
Context. We describe the new Swedish-ESO PI Instrument for APEX (SEPIA) receiver, which was designed and built by the Group for Advanced Receiver Development (GARD), at Onsala Space Observatory (OSO) in collaboration with ESO. It was installed and commissioned at the APEX telescope during 2015 with an ALMA Band 5 receiver channel and updated with a new frequency channel (ALMA Band 9) in February 2016. Aims. This manuscript aims to provide, for observers who use the SEPIA receiver, a reference in terms of the hardware description, optics and performance as well as the commissioning results. Methods. Out of three available receiver cartridge positions in SEPIA, the two current frequency channels, corresponding to ALMA Band 5, the RF band 158-211 GHz, and Band 9, the RF band 600-722 GHz, provide state-of-the-art dual polarization receivers. The Band 5 frequency channel uses 2SB SIS mixers with an average SSB noise temperature around 45K with IF (intermediate frequency) band 4-8 GHz for each sideband providing total 4 x 4 GHz IF band. The Band 9 frequency channel uses DSB SIS mixers with a noise temperature of 75-125 K with IF band 4-12 GHz for each polarization. Results. Both current SEPIA receiver channels are available to all APEX observers
Corrigendum:SEPIA - a new single pixel receiver at the APEX telescope (
Context. We describe the new Swedish-ESO PI Instrument for APEX (SEPIA) receiver, which was designed and built by the Group for Advanced Receiver Development (GARD), at Onsala Space Observatory (OSO) in collaboration with ESO. It was installed and commissioned at the APEX telescope during 2015 with an ALMA Band 5 receiver channel and updated with a new frequency channel (ALMA Band 9) in February 2016. Aims. This manuscript aims to provide, for observers who use the SEPIA receiver, a reference in terms of the hardware description, optics and performance as well as the commissioning results. Methods. Out of three available receiver cartridge positions in SEPIA, the two current frequency channels, corresponding to ALMA Band 5, the RF band 158-211 GHz, and Band 9, the RF band 600-722 GHz, provide state-of-the-art dual polarization receivers. The Band 5 frequency channel uses 2SB SIS mixers with an average SSB noise temperature around 45K with IF (intermediate frequency) band 4-8 GHz for each sideband providing total 4 x 4 GHz IF band. The Band 9 frequency channel uses DSB SIS mixers with a noise temperature of 75-125 K with IF band 4-12 GHz for each polarization. Results. Both current SEPIA receiver channels are available to all APEX observers
Highlights from the first year of Odin observations
Key Odin operational and instrumental features and highlights from our sub-millimetre and millimetre wave observations of H2O, H2 18O, NH3, 15NH3 and O2 are presented, with some insights into accompanying Odin Letters in this A&A issue. We focus on new results where Odin's high angular resolution, high frequency resolution, large spectrometer bandwidths, high sensitivity or/and frequency tuning capability are crucial: H2O mapping of the Orion KL, W3, DR 21, S 140 regions, and four comets; H2O observations of Galactic Centre sources, of shock enhanced H2O towards the SNR IC 443, and of the candidate infall source IRAS 16293-2422; H2 18O detections in Orion KL and in comet Ikeya-Zhang; sub-mm detections of NH3 in Orion KL (outflow, ambient cloud and bar) and ρ Oph, and very recently, of 15NH3 in Orion KL. Simultaneous sensitive searches for the 119 GHz line of O2 have resulted in very low abundance limits, which are difficult to accommodate in chemical models. We also demonstrate, by means of a quantitative comparison of Orion KL H2O results, that the Odin and SWAS observational data sets are very consistently calibrated