33 research outputs found
An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function
Stress granules (SG) are membrane-less compartments involved in regulating mRNAs during stress. Aberrant forms of SGs have been implicated in age-related diseases, such as amyotrophic lateral sclerosis (ALS), but the molecular events triggering their formation are still unknown. Here, we find that misfolded proteins, such as ALS-linked variants of SOD1, specifically accumulate and aggregate within SGs in human cells. This decreases the dynamics of SGs, changes SG composition, and triggers an aberrant liquid-to-solid transition of in vitro reconstituted compartments. We show that chaperone recruitment prevents the formation of aberrant SGs and promotes SG disassembly when the stress subsides. Moreover, we identify a backup system for SG clearance, which involves transport of aberrant SGs to the aggresome and their degradation by autophagy. Thus, cells employ a system of SG quality control to prevent accumulation of misfolded proteins and maintain the dynamic state of SGs, which may have relevance for ALS and related diseases
RNA buffers the phase separation behavior of prion-like RNA binding proteins
Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNAcritically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions.1125sciescopu
Intracellular Mass Density Increase Is Accompanying but Not Sufficient for Stiffening and Growth Arrest of Yeast Cells
Many organisms, including yeast cells, bacteria, nematodes, and tardigrades, endure harsh environmental conditions, such as nutrient scarcity, or lack of water and energy for a remarkably long time. The rescue programs that these organisms launch upon encountering these adverse conditions include reprogramming their metabolism in order to enter a quiescent or dormant state in a controlled fashion. Reprogramming coincides with changes in the macromolecular architecture and changes in the physical and mechanical properties of the cells. However, the cellular mechanisms underlying the physical-mechanical changes remain enigmatic. Here, we induce metabolic arrest of yeast cells by lowering their intracellular pH. We then determine the differences in the intracellular mass density and stiffness of active and metabolically arrested cells using optical diffraction tomography (ODT) and atomic force microscopy (AFM). We show that an increased intracellular mass density is associated with an increase in stiffness when the growth of yeast is arrested. However, increasing the intracellular mass density alone is not sufficient for maintenance of the growth-arrested state in yeast cells. Our data suggest that the cytoplasm of metabolically arrested yeast displays characteristics of a solid. Our findings constitute a bridge between the mechanical behavior of the cytoplasm and the physical and chemical mechanisms of metabolically arrested cells with the ultimate aim of understanding dormant organisms
Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery
Summary: How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery. : Kroschwald et al. show that different environmental stresses induce Pub1 stress granule condensates with different material properties. The material properties define the rate of stress granule dissolution and the requirement for disaggregases. The stress granule constituents are released before reentry into the cell cycle. Keywords: phase separation, condensate, phase transition, stress granule, stress response, molecular chaperone, Hsp104, protein aggregation, cytosolic p
Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery
Summary: How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery. : Kroschwald et al. show that different environmental stresses induce Pub1 stress granule condensates with different material properties. The material properties define the rate of stress granule dissolution and the requirement for disaggregases. The stress granule constituents are released before reentry into the cell cycle. Keywords: phase separation, condensate, phase transition, stress granule, stress response, molecular chaperone, Hsp104, protein aggregation, cytosolic p
Tandem Acyl Carrier Proteins in the Curacin Biosynthetic Pathway Promote Consecutive Multienzyme Reactions with a Synergistic Effect
No AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83203/1/ange_201005280_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/83203/2/2847_ftp.pd
Structural and functional analysis of the DEAF-1 and BS69 MYND domains.
DEAF-1 is an important transcriptional regulator that is required for embryonic development and is linked to clinical depression and suicidal behavior in humans. It comprises various structural domains, including a SAND domain that mediates DNA binding and a MYND domain, a cysteine-rich module organized in a Cys(4)-Cys(2)-His-Cys (C4-C2HC) tandem zinc binding motif. DEAF-1 transcription regulation activity is mediated through interactions with cofactors such as NCoR and SMRT. Despite the important biological role of the DEAF-1 protein, little is known regarding the structure and binding properties of its MYND domain.Here, we report the solution structure, dynamics and ligand binding of the human DEAF-1 MYND domain encompassing residues 501-544 determined by NMR spectroscopy. The structure adopts a ββα fold that exhibits tandem zinc-binding sites with a cross-brace topology, similar to the MYND domains in AML1/ETO and other proteins. We show that the DEAF-1 MYND domain binds to peptides derived from SMRT and NCoR corepressors. The binding surface mapped by NMR titrations is similar to the one previously reported for AML1/ETO. The ligand binding and molecular functions of the related BS69 MYND domain were studied based on a homology model and mutational analysis. Interestingly, the interaction between BS69 and its binding partners (viral and cellular proteins) seems to require distinct charged residues flanking the predicted MYND domain fold, suggesting a different binding mode. Our findings demonstrate that the MYND domain is a conserved zinc binding fold that plays important roles in transcriptional regulation by mediating distinct molecular interactions with viral and cellular proteins
Stress granules plug and stabilize damaged endolysosomal membranes
AbstractEndomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3–7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.</jats:p