8 research outputs found

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-Îł released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Differential Dynamics of SARS-CoV-2 Binding and Functional Antibodies upon BNT162b2 Vaccine: A 6-Month Follow-Up

    No full text
    To investigate the dynamic association among binding and functional antibodies in health-care-workers receiving two doses of BNT162b2 mRNA COVID-19-vaccine, SARS-CoV-2 anti-RBD IgG, anti-Trimeric-S IgG, and neutralizing antibodies (Nabs) were measured in serum samples collected at 2 weeks, 3 months, and 6 months from full vaccination. Despite the high correlation, results for anti-RBD and anti-Trimeric S IgG were numerically different even after recalculation to BAU/mL following WHO standards indications. Moreover, after a peak response at 2 weeks, anti-RBD IgG levels showed a 4.5 and 13 fold decrease at 3 and 6 months, respectively, while the anti-Trimeric S IgG presented a less pronounced decay of 2.8 and 4.7 fold. Further different dynamics were observed for Nabs titers, resulting comparable at 3 and 6 months from vaccination. We also demonstrated that at NAbs titers ≥40, the area under the receiver operating characteristic curve and the optimal cutoff point decreased with time from vaccination for both anti-RBD and anti-Trimeric S IgG. The mutating relation among the anti-RBD IgG, anti-Trimeric S IgG, and neutralizing antibodies are indicative of antibody maturation upon vaccination. The lack of standardized laboratory procedures is one factor interfering with the definition of a correlate of protection from COVID-19

    Torquetenovirus Loads in Peripheral Blood Predict Both the Humoral and Cell-Mediated Responses to SARS-CoV-2 Elicited by the mRNA Vaccine in Liver Transplant Recipients

    No full text
    Three years into the COVID-19 pandemic, mass vaccination campaigns have largely controlled the disease burden but have not prevented virus circulation. Unfortunately, many immunocompromised patients have failed to mount protective immune responses after repeated vaccinations, and liver transplant recipients are no exception. Across different solid organ transplant populations, the plasma levels of Torquetenovirus (TTV), an orphan and ubiquitous human virus under control of the immune system, have been shown to predict the antibody response after COVID-19 vaccinations. We show here a single-institution experience with TTV viremia in 134 liver transplant recipients at their first or third dose. We found that TTV viremia before the first and third vaccine doses predicts serum anti-SARS-CoV-2 Spike receptor-binding domain (RBD) IgG levels measured 2–4 weeks after the second or third dose. Pre-vaccine TTV loads were also associated with peripheral blood anti-SARS-CoV-2 cell-mediated immunity but not with serum SARS-CoV-2 neutralizing antibody titers

    External quality assessment of SARS-CoV-2 serology in European expert laboratories, April 2021.

    No full text
    BACKGROUND: Countries worldwide are focusing to mitigate the ongoing SARS-CoV-2 pandemic by employing public health measures. Laboratories have a key role in the control of SARS-CoV-2 transmission. Serology for SARS-CoV-2 is of critical importance to support diagnosis, define the epidemiological framework and evaluate immune responses to natural infection and vaccine administration. AIM: The aim of this study was the assessment of the actual capability among laboratories involved in sero-epidemiological studies on COVID-19 in EU/EEA and EU enlargement countries to detect SARS-CoV-2 antibodies through an external quality assessment (EQA) based on proficiency testing. METHODS: The EQA panels were composed of eight different, pooled human serum samples (all collected in 2020 before the vaccine roll-out), addressing sensitivity and specificity of detection. The panels and two EU human SARS-CoV-2 serological standards were sent to 56 laboratories in 30 countries. RESULTS: The overall performance of laboratories within this EQA indicated a robust ability to establish past SARS-CoV-2 infections via detection of anti-SARS-CoV-2 antibodies, with 53 of 55 laboratories using at least one test that characterised all EQA samples correctly. IgM-specific test methods provided most incorrect sample characterisations (24/208), while test methods detecting total immunoglobulin (0/119) and neutralising antibodies (2/230) performed the best. The semiquantitative assays used by the EQA participants also showed a robust performance in relation to the standards. CONCLUSION: Our EQA showed a high capability across European reference laboratories for reliable diagnostics for SARS-CoV-2 antibody responses. Serological tests that provide robust and reliable detection of anti-SARS-CoV-2 antibodies are available

    Retention of Neutralizing Response against SARS-CoV-2 Omicron Variant in Sputnik V-Vaccinated Individuals

    Get PDF
    The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination

    Safety and immune response kinetics of GRAd-COV2 vaccine: phase 1 clinical trial results

    No full text
    Despite the successful deployment of efficacious vaccines and therapeutics, the development of novel vaccines for SARS-CoV-2 remains a major goal to increase vaccine doses availability and accessibility for lower income setting. We report here on the kinetics of Spike-specific humoral and T-cell response in young and old volunteers over 6 months follow-up after a single intramuscular administration of GRAd-COV2, a gorilla adenoviral vector-based vaccine candidate currently in phase-2 of clinical development. At all three tested vaccine dosages, Spike binding and neutralizing antibodies were induced and substantially maintained up to 3 months, to then contract at 6 months. Potent T-cell responses were readily induced and sustained throughout the study period, with only minor decline. No major differences in immune response to GRAd-COV2 vaccination were observed in the two age cohorts. In light of its favorable safety and immunogenicity, GRAd-COV2 is a valuable candidate for further clinical development and potential addition to the COVID-19 vaccine toolbox to help fighting SARS-CoV-2 pandemic
    corecore