5,525 research outputs found
Gene Edited T Cell Therapies for Inborn Errors of Immunity
Inborn errors of immunity (IEIs) are a heterogeneous group of inherited disorders of the immune system. Many IEIs have a severe clinical phenotype that results in progressive morbidity and premature mortality. Over 450 IEIs have been described and the incidence of all IEIs is 1/1,000–10,000 people. Current treatment options are unsatisfactory for many IEIs. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative but requires the availability of a suitable donor and carries a risk of graft failure, graft rejection and graft-versus-host disease (GvHD). Autologous gene therapy (GT) offers a cure whilst abrogating the immunological complications of alloHSCT. Gene editing (GE) technologies allow the precise modification of an organisms’ DNA at a base-pair level. In the context of genetic disease, this enables correction of genetic defects whilst preserving the endogenous gene control machinery. Gene editing technologies have the potential to transform the treatment landscape of IEIs. In contrast to gene addition techniques, gene editing using the CRISPR system repairs or replaces the mutation in the DNA. Many IEIs are limited to the lymphoid compartment and may be amenable to T cell correction alone (rather than haematopoietic stem cells). T cell Gene editing has the advantages of higher editing efficiencies, reduced risk of deleterious off-target edits in terminally differentiated cells and less toxic conditioning required for engraftment of lymphocytes. Although most T cells lack the self-renewing property of HSCs, a population of T cells, the T stem cell memory compartment has long-term multipotent and self-renewal capacity. Gene edited T cell therapies for IEIs are currently in development and may offer a less-toxic curative therapy to patients affected by certain IEIs. In this review, we discuss the history of T cell gene therapy, developments in T cell gene editing cellular therapies before detailing exciting pre-clinical studies that demonstrate gene editing T cell therapies as a proof-of-concept for several IEIs
Recommended from our members
Laminar flow-induced scission kinetics of polymers in dilute solutions
AbstractKing Abdulaziz City for Science and Technology (KACST)
EPSRC (Grant No. EP/S009000/1
Tuberculosis and Mental Health in the Asia-Pacific
Objective: This opinion piece encourages mental health researchers and clinicians to engage with mental health issues among tuberculosis patients in the Asia-Pacific region in a culturally appropriate and ethical manner. The diversity of cultural contexts and the high burden of tuberculosis throughout the Asia-Pacific presents significant challenges. Research into tuberculosis and mental illness in this region is an opportunity to develop more nuanced models of mental illness and treatment, while simultaneously contributing meaningfully to regional tuberculosis care and prevention. Conclusions: We overview key issues in tuberculosis and mental illness co-morbidity, highlight ethical concerns and advocate for a regional approach to tuberculosis and mental health that is consistent with the transnational challenges presented by this airborne infectious disease. Integrating tuberculosis and mental health services will go a long way to addressing the needs of vulnerable populations and stopping the transmission of one of the world’s biggest infectious killers. tuberculosis mental illness mental health depression psychosis Asia-Pacifi
Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients
Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne–Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Πand 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar–Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge–Sponer plots and various population analyses across the C+-RG series (RG = He–Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data
The STELLAR trial protocol: a prospective multicentre trial for Richter’s syndrome consisting of a randomised trial investigation CHOP-R with or without acalabrutinib for newly diagnosed RS and a single-arm platform study for evaluation of novel agents in relapsed disease
Background
Transformation of chronic lymphocytic leukaemia (CLL) to diffuse large B-cell lymphoma (DLCBL) type Richter’s syndrome (RS) carries a dismal prognosis. Standard-of-care chemoimmunotherapy for de novo RS is inadequate with median survival of less than one year. Patients are frequently elderly or have co-morbidities limiting dose-intense chemotherapy. Treatment of relapsed/refractory (R/R) RS and RS emerging after CLL-directed therapy represent urgent unmet clinical needs.
Agents targeting Bruton’s tyrosine kinase (BTK) deliver improved outcomes for patients with high-risk CLL and expand effective treatments to frailer patients. Acalabrutinib is an oral, second-generation BTK inhibitor with a favourable toxicity profile and demonstrated activity in CLL and B-cell lymphomas. Combination of acalabrutinib with standard-of-care CHOP-R chemoimmunotherapy offers a sound rationale to test in a prospective trial for de novo RS.
Methods
The prospective multicentre STELLAR study is designed in two elements, consisting of a randomised study to evaluate the safety and activity of CHOP-R chemoimmunotherapy in combination with acalabrutinib in newly diagnosed RS and single-arm studies of novel agents for other RS patient cohorts.
Eligible patients with newly diagnosed DLBCL-type RS are randomised between six cycles of CHOP-R therapy and six cycles CHOP-R plus acalabrutinib, followed by acalabrutinib maintenance. The primary endpoint of the randomised component is progression free survival (PFS).
Cohort 1 enrols RS patients with progressive disease following chemoimmunotherapy for acalabrutinib monotherapy. Patients with RS diagnosed while on ibrutinib may enrol in Cohort 2, a single-arm study of CHOP-R plus acalabrutinib. The primary endpoint for the single-arm studies is overall response rate (ORR).
Secondary endpoints for all cohorts are overall survival (OS), quality of life and proportion of patients proceeding to stem cell transplantation.
The study will be accompanied by exploratory analysis of the mutational landscape of RS and the relationship between dynamic changes in sequential circulating tumour DNA samples and clinical outcomes.
Discussion
The STELLAR randomised trial evaluates the role of CHOP-R plus acalabrutinib in newly diagnosed RS patients. The single-arm platform studies enable the incorporation of promising novel therapies into the protocol. The STELLAR study has potential to identify novel biomarkers of treatment response in this high-risk malignancy.
Trial registration
EudraCT: 2017–004401-40, registered on the 31-Oct-2017.
IRSCTN: https://www.isrctn.com/ISRCTN52839057, registered on the 04-Mar-2019.
ClinicalTrials.gov: NCT03899337, registered on 02-April-2019
Absence of ancient DNA in sub-fossil insect inclusions preserved in 'Anthropocene' Colombian copal.
Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in 'Anthropocene' Colombian copal, dated to 'post-Bomb' and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal
- …