2,163 research outputs found
Solid-state Nonlinear Optical Properties of Mononuclear Copper(II) Complexes with Chiral Tridentate and Tetradentate Schiff Base Ligands
Salen-type metal complexes have been actively studied for their nonlinear optical (NLO) properties, and push-pull compounds with charge asymmetry generated by electron releasing and withdrawing groups have shown promising results. As a continuation of our research in this field and aiming at solid-state features, herein we report on the synthesis of mononuclear copper(II) derivatives bearing either tridentate N2O Schiff bases L(a-c)- and pyridine as the forth ancillary ligand, [Cu(La-c)(py)](ClO4) (1a-c), or unsymmetrically-substituted push-pull tetradentate N2O2 Schiff base ligands, [Cu(5-A-5'-D-saldpen/chxn)] (2a-c), both derived from 5-substituted salicylaldehydes (sal) and the diamines (1R,2R)-1,2-diphenylethanediamine (dpen) and (1S,2S)-1,2-diaminocyclohexane (chxn). All compounds were characterized through elemental analysis, infrared and UV/visible spectroscopies, and mass spectrometry in order to guarantee their purity and assess their charge transfer properties. The structures of 1a-c were determined via single-crystal X-ray diffraction studies. The geometries of cations of 1a-c and of molecules 2a-c were optimized through DFT calculations. The solid-state NLO behavior was measured by the Kurtz-Perry powder technique @1.907 µm. All chiral derivatives possess non-zero quadratic electric susceptibility (χ(2)) and an efficiency of about 0.15-0.45 times that of standard urea
Solvent nature effect in preparation of perovskites by flame pyrolysis: 2 : Alcohols and alcohols plus propionic acid mixtures
The effect of either pure alcohols or alcohols + propionic acid mixtures as solvents for the preparation by flame pyrolysis of a standard LaCoO3 catalyst, to be employed for the catalytic flameless combustion of methane, has been investigated. All the catalysts proved very active for the mentioned reaction. Low-MW pure alcohols showed however less suitable than alcohols-propionic acid mixtures, leading to lower perovskite phase purity, less particle size homogeneity and lower specific surface area. The high volatility of the solvent seems to be the major cause, together with the improper behaviour of nitrates (forced by solubility reasons) as perovskite metals precursors. However, the addition of propionic acid to the alcohols allowed to use the acetates as precursors and hence to obtain high perovskitic phase purity, high SSA and Uniform particle size. Moreover, the increase of combustion enthalpy of the solvent, through the addition of higher-MW alcohols, leading to progressively higher flame temperature, strongly improved the thermal resistance of the catalyst, without lowering catalytic performance
Solvent nature effect in preparation of perovskites by flame pyrolysis: 1: carboxylic acids
The effect of a series of carboxylic acids (C(2)-C(8)), as solvents for the preparation by flame spray pyrolysis of LaCoO(3) catalyst for the flameless combustion of methane, has been investigated. Acetic acid showed to be unsatisfactory from several points of view: low phase purity of the catalyst, higher amount of unburnt carbonaceous residua, lower catalytic activity and low thermal stability. By increasing the carbon chain length of the solvent, the consequent increase of flame temperature led to an increase of crystal phase purity and of particle size and to a decrease of specific surface area of the catalyst. Catalytic activity showed only marginally affected by the last parameter, phase purity seeming more important. Thermal resistance showed directly related to flame temperature, i.e. to the combustion enthalpy of the solvent, but a relatively high amount of residual organic matter can negatively affect this property
Visualization through magnetic resonance imaging of DNA internalized following "in vivo" electroporation.
The ability to visualize plasmid DNA entrapment in muscle cells undergoing an "in vivo" electroporation treatment was investigated on BALB/c mice using a 7-T magnetic resonance imaging (MRI) scanner using the paramagnetic Gd–DOTA–spd complex as imaging reporter. Gd–DOTA–spd bears a tripositively charged spermidine residue that yields a strong binding affinity toward the negatively charged DNA chain (6.4 kb, K a = 2.2 × 10 3 M −1 for approximately 2500 ± 500 binding sites). Cellular colocalization of Gd-DOTA-spd and plasmid DNA has been validated by histological analysis of excised treated muscle. In vivo MRI visualization of Gd-DOTA-spd distribution provides an excellent route to access the cellular entrapment of plasmid DNA upon applying an electroporation pulse
Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach-which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution-with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are-at least partially-shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension
Arthrobacter sp. Inoculation Improves Cactus Pear Growth, Quality of Fruits, and Nutraceutical Properties of Cladodes
A study was undertaken to determine the effects of a strain of Arthrobacter sp., a Plant Growth-Promoting Bacteria (PGPB), on plant phenology and qualitative composition of Opuntia ficus-indica (L.) Mill. fruits and cladodes. The strain was inoculated in soil, and its effects on cactus pear plants were detected and compared to nontreated plants. Compared to the latter, the treatment with bacteria promoted an earlier plant sprouting (2 months before the control) and fruitification, ameliorating fruit quality (i.e., improved fresh and dry weight: + 24% and + 26%, respectively, increased total solid content by 30% and polyphenols concentrations by 22%). The quality and quantity of monosaccharides of cladodes were also increased by Arthrobacter sp. with a positive effect on their nutraceutical value. In summer, the mean values of xylose, arabinose, and mannose were significantly higher in treated compared to not treated plants (+ 3.54; + 7.04; + 4.76 mg/kg d.w. respectively). A similar trend was observed in autumn, when the cladodes of inoculated plants had higher contents, i.e., 33% xylose, 65% arabinose, and 40% mannose, respect to the controls. In conclusion, Arthrobacter sp. plays a role in the improvement of nutritional and nutraceutical properties of cactus pear plants due to its capabilities to promote plant growth. Therefore, these results open new perspectives in PGPB application in the agro-farming system as alternative strategy to improve cactus pear growth, yield, and cladodes quality, being the latter the main by-product to be utilized for additional industrial uses
A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure
The use of an automatic system for the analysis of mammographic images has
proven to be very useful to radiologists in the investigation of breast cancer,
especially in the framework of mammographic-screening programs. A breast
neoplasia is often marked by the presence of microcalcification clusters and
massive lesions in the mammogram: hence the need for tools able to recognize
such lesions at an early stage. In the framework of the GPCALMA (GRID Platform
for Computer Assisted Library for MAmmography) project, the co-working of
italian physicists and radiologists built a large distributed database of
digitized mammographic images (about 5500 images corresponding to 1650
patients) and developed a CAD (Computer Aided Detection) system, able to make
an automatic search of massive lesions and microcalcification clusters. The CAD
is implemented in the GPCALMA integrated station, which can be used also for
digitization, as archive and to perform statistical analyses. Some GPCALMA
integrated stations have already been implemented and are currently on clinical
trial in some italian hospitals. The emerging GRID technology can been used to
connect the GPCALMA integrated stations operating in different medical centers.
The GRID approach will support an effective tele- and co-working between
radiologists, cancer specialists and epidemiology experts by allowing remote
image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th
IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200
- …