214 research outputs found

    Geochronology and Depositional History of the Sandy Springs Aeolian Landscape in the Unglaciated Upper Ohio River Valley, United States

    Get PDF
    The study of active and stabilized late Quaternary aeolian landforms provides important proxies for past climate events and environmental transitions. Despite an overall increase in the study of aeolian landforms in previously glaciated and coastal settings in eastern North America, the history of aeolian sedimentation in many unglaciated inland alluvial settings remain poorly understood. This study reports on the geochronology and depositional history of aeolian landforms and sediments in the unglaciated upper Ohio Valley at the Sandy Springs site. Aeolian landforms and sediments include complex, linear, barchan-like, and climbing dunes; an interdune sand sheet; and sandy loess that blankets high valley surfaces. At Sandy Springs, aeolian dune sands and sandy loess are restricted to intermediate (S2) and higher (S3) geomorphic surfaces. Eight optically stimulated luminescence age estimates constrain the initiation of aeolian processes on the S2 surface to sometime after 17 ka and episodic deposition on the S2 and S3 surfaces between 11 and 1.4 ka. The distribution of aeolian sediments at Sandy Springs is influenced by several past factors including local wind fetch potential, sediment availability, and underlying alluvial topography. Sediment availability is interpreted as the primary factor controlling aeolian processes and appear linked to several pan-regional paleoclimate events. Sandy loess deposition at ca. 8.2 ka on the S3 surface may reflect hydrologic variability and cooling, associated with the final pulse of meltwater into the North Atlantic from the Laurentide Ice Sheet. Dune reactivation and erosion at ca. 4.5 ka on the S2 surface indicate enhanced sediment availability possibly associated with drought conditions. These results illustrate that the deciphering the coupled fluvial-aeolian records in this catchment of the Ohio River provides new insight into the nature of changing surface processes against the backdrop of climate variability over the past ca. 20 ka

    Researchers explore Arctic freshwater\u27s role in ocean circulation

    Get PDF
    A critical, but insufficiently understood, component of global change is the influence of Arctic freshwater input on water mass exchange between the Arctic Ocean and Atlantic and Pacific Oceans. Four of the Earth\u27s 10 largest river systems, the Mackenzie, Ob,Yenisei, and Lena, contribute water to the Arctic shore (Figure 1) from a vast watershed that drains continental interiors. This river discharge flows into the world\u27s largest contiguous continental shelf and supplies over 50% (1823 km3 ) of the riverine input to the Arctic Ocean

    Evaluating Landscape Degradation Along Climatic Gradients During the 1930s Dust Bowl Drought From Panchromatic Historical Aerial Photographs, United States Great Plains

    Get PDF
    The United States Great Plains (USGP) are some of the most productive rangelands globally and a significant carbon sink for the atmosphere, but grassland response to precipitation is highly variable and poorly constrained over time and space. There is a rich historical aerial photographic record of the USGP which provides an unparalleled view of past landscapes and allows for evaluation of surficial response to drought beyond the satellite record, such as during the 1930s Dust Bowl Drought (DBD). This study classified the extent and loci of surficial denudation from seamless mosaics of radiometrically corrected and georectified digitized aerial negatives acquired in the late 1930s from six counties distributed across USGP ecoregions. The dominant sources of degradation found for sites east of the 100th meridian are cultivated fields and fluvial deposits, associated with woody vegetation response to water availability in uncultivated areas. For sites to the west, denuded surfaces are predominantly eolian sandsheets and dunes, correlated with intensity of drought conditions and reduced plant diversity. Discrete spatial signatures of the drought are observed not only within the classically recognized southern Dust Bowl area, but also in the northern and central plains. Statistical analyses of site variability suggest landscape response to the DBD is most strongly influenced by the arid–humid divide and severity of precipitation and temperature anomalies. With a projected increase 21st century aridity, eolian processes cascading across western grasslands, like during the Dust Bowl, may significantly impact future dust particle emission and land and carbon storage management

    Optically Stimulated Luminescence Dating of Late Holocene Raised Strandplain Sequences Adjacent to Lakes Michigan and Superior, Upper Peninsula, Michigan, USA

    Get PDF
    This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/ Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ~4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages b100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages b2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages N2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 F 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ~1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic. D 2004 University of Washington. All rights reserved

    Lakeside View: Sociocultural Responses to Changing Water Levels of Lake Turkana, Kenya

    Get PDF
    Throughout the Holocene, Lake Turkana has been subject to drastic changes in lake levels and the subsistence strategies people employ to survive in this hot and arid region. In this paper, we reconstruct the position of the lake during the Holocene within a paleoclimatic context. Atmospheric forcing mechanisms are discussed in order to contextualize the broader landscape changes occurring in eastern Africa over the last 12,000 years. The Holocene is divided into five primary phases according to changes in the strand-plain evolution, paleoclimate, and human subsistence strategies practiced within the basin. Early Holocene fishing settlements occurred adjacent to high and relatively stable lake levels. A period of high-magnitude oscillations in lake levels ensued after 9,000 years BP and human settlements appear to have been located close to the margins of the lake. Aridification and a final regression in lake levels ensued after 5,000 years BP and human communities were generalized pastoralists-fishers-foragers. During the Late Holocene, lake levels may have dropped below their present position and subsistence strategies appear to have been flexible and occasionally specialized on animal pastoralism. Modern missionary and government outposts have encouraged the construction of permanent settlements in the region, which are heavily dependent on outside resources for their survival. Changes in the physical and cultural environments of the Lake Turkana region have been closely correlated, and understanding the relationship between the two variables remains a vital component of archaeological research

    Spatial variations of tectonic uplift - subducting plate ffects on the Guerrero Forearc, Mexico

    Get PDF
    Uplift is the predominant factor controlling fluvial systems in tectonically deforming regions. Mountains along subduction zones force incision, aggradation, or sinuosity modifications, showing differential uplift and variations in erosion rates, in river incision, and in channel gradient produced by ongoing tectonic deformation. Thus, landscape can provide information on the tectonic activity of a defined region. Here, field studies, analysis of geomorphic indices using a digital elevation model, and dating of river terraces were undertaken to extract the following: (1) determine rates of ongoing tectonic deformation, (2) identify evidence of active faulting, and (3) explain the possible relation of ongoing differential uplift in the topography of the overriding plate with the geometry and roughness effects of subducting slab along the Mexican subduction within the Guerrero sector. Landscape analysis using geomorphic indices suggests segmentation along stream of the studied Tecpan River basin. Rates of tectonic uplift were derived from river incision rates computed with the combination of strath terrace heights and associated dating. Tectonic uplift rates vary from ∼1 ± 0.3 mm/yr up to ∼5 ± 0.6 mm/yr during the Holocene, consistent with inferred high tectonic activity in this zone. These results vary significantly spatially, i.e., increasing upstream. Possible explanations for spatial variations of tectonic uplift rates are most likely related to an effect of the geometry and the rugged seafloor of the oceanic Cocos plate subduction beneath a faulted continental lithosphere

    Researchers Explore Arctic Freshwater's Role in Ocean Circulation

    Get PDF
    This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/faculty_pubs/149National Science FoundationGrant ATM-981826

    Late Quaternary aeolian dynamics, pedostratigraphy and soil formation in the North European Lowlands – new findings from the Baruther ice-marginal valley

    Get PDF
    The construction of dunes in central Europe reflects ample sediment supply during the last deglacial hemicycle. A Quaternary inland dune complex in southern Brandenburg, Germany, was studied to determine the duration of recent pedogenesis, from two outcrops, which show buried paleosols. An integrative approach, which combined geomorphological, sedimentological, (paleo-)pedological and chronological methods was used to identify aeolian deposition events, ensuing pedogenesis and anthropogenic remobilization. At the outcrops, which were situated approximately 2 km apart from each other, in total twelve samples of the aeolian sands were dated using optically stimulated luminescence (OSL) and six using 14C dating. Although the dunes have similar morphological features, these forms have a different history of aeolian sand deposition and pedogenesis. At the older dune (Gl 1) the surface soil is a well developed Podzol, whereas soil development of the younger dune (Gl 2) is clearly in an initial state. The two dunes also differ in grain size distribution and in the presence of buried soils, thereby indicating a climatic impact on aeolian remobilization
    • …
    corecore