306 research outputs found

    Multi-Level quasi-Newton methods for the partitioned simulation of fluid-structure interaction

    Get PDF
    In previous work of the authors, Fourier stability analyses have been performed of Gauss-Seidel iterations between the flow solver and the structural solver in a partitioned fluid-structure interaction simulation. These analyses of the flow in an elastic tube demonstrated that only a number of Fourier modes in the error on the interface displacement are unstable. Moreover, the modes with a low wave number are most unstable and these modes can be resolved on a coarser grid. Therefore, a new class of quasi-Newton methods with more than one grid level is introduced. Numerical experiments show a significant reduction in run time

    MgB2 superconducting thin films with a transition temperature of 39 Kelvin

    Full text link
    We report the growth of high-quality c-axis-oriented epitaxial MgB2 thin films by using a pulsed laser deposition technique. The thin films grown on (1`1 0 2) Al2O3 substrates show a Tc of 39 K. The critical current density in zero field is ~ 6 x 10^6 A/cm2 at 5 K and ~ 3 x 10^5 A/cm^2 at 35 K, suggesting that this compound has great potential for electronic device applications, such as microwave devices and superconducting quantum interference devices. For the films deposited on Al2O3, X-ray diffraction patterns indicate a highly c-axis-oriented crystal structure perpendicular to the substrate surface.Comment: 3 pages and 3 figure

    Stability analysis of second-order time accurate schemes for ALE-FEM

    Get PDF
    In this work we will introduce and analyze the Arbitrary Lagrangian Eulerian formulation for a model problem of a scalar advection-diffusion equation defined on a moving domain. Moving from the results illustrated in our previous work [J. Num. Math. 7 (1999) 105], we will consider first and second-order time advancing schemes and analyze how the movement of the domain might affect accuracy and stability properties of the numerical schemes with respect to their counterpart on fixed domains. Theoretical and numerical results will be presented, showing that stability properties are not, in general, preserved, while accuracy is maintained. (C) 2004 Elsevier B.V. All rights reserved

    New Challenges in Grid Generation and Adaptivity for Scientific Computing

    Get PDF
    This volume collects selected contributions from the “Fourth Tetrahedron Workshop on Grid Generation for Numerical Computations”, which was held in Verbania, Italy in July 2013. The previous editions of this Workshop were hosted by the Weierstrass Institute in Berlin (2005), by INRIA Rocquencourt in Paris (2007), and by Swansea University (2010). This book covers different, though related, aspects of the field: the generation of quality grids for complex three-dimensional geometries; parallel mesh generation algorithms; mesh adaptation, including both theoretical and implementation aspects; grid generation and adaptation on surfaces – all with an interesting mix of numerical analysis, computer science and strongly application-oriented problems

    Landslide run-out simulations with depth-averaged models and integration with 3D impact analysis using the Material Point Method

    Get PDF
    Landslides pose a significant threat to human safety and the well-being of com- munities, making them one of the most challenging natural phenomena. Their potential for catastrophic consequences, both in terms of human lives and economic impact, is a major con- cern. Additionally, their inherent unpredictability adds to the complexity of managing the risks associated with landslides. It is crucial to continuously monitor areas susceptible to landslides. In situ detection systems like piezometers and strain gauges play a vital role in accurately mon- itoring internal pressures and surface movements in the targeted areas. Simultaneously, satel- lite surveys contribute by offering detailed topographic and elevation data for the study area. However, relying solely on empirical monitoring is insufficient for ensuring effective manage- ment of hazardous situations, especially in terms of preventive measures. This study provides advanced simulations of mudflows and fast landslides using particle depth-averaged methods, specifically employing the Material Point Method adapted for shallow water (Depth Averaged Material Point Method). The numerical method has been parallelized and validated through benchmark tests and real-world cases. Furthermore, the investigation extends to coupling the depth-averaged formulation with a three-dimensional one in order to have a detailed description of the impact phase of the sliding material on barriers and membranes. The multidimensional approach and its validation on real cases provide a robust foundation for a more profound and accurate understanding of the behavior of mudflows and fast landslides

    An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach

    Get PDF
    A numerical procedure that combines an extended finite element formulation and a discontinuous Galerkin technique is presented, with the final aim of providing an effective tool for the simulation of three-dimensional (3D) fluid-structure interaction problems. In this work we consider a thick structure immersed in a fluid. We describe the numerical models and discuss the specific implementation issues arising in three dimensions. Finally, 3D numerical results are provided to show the effectiveness of the approach

    Time-discrete higher order ALE formulations: a priori error analysis

    Full text link
    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results.</p

    reduced models for blood flow in curved vessels

    Get PDF
    Flow in curved pipes has been intensively investigated and applications to arterial o w are relevant both in physiological and pathological conditions. A comprehensive survey of the work devel- oped over almost one century from experimental and modelling point of view is carried out. Despite its complex nature, the 3D curved o w can be modeled, under reasonable assumptions, accounting only for 2, or even 1, geometrical dimensions. A couple of dieren t reduced models are presented and discussed here. Results of numerical simulations demonstrate the role of curvature in the formation of the secondary o w patterns and in the asymmetry of wall shear stresses. Both the above features can have important haemodynamical eects and clinical diagnostic velocimeters should be equipped with correction algorithms for the measurement bias induced by vessel curvature

    Mesh update techniques for free-surface flow solvers using spectral element method

    Get PDF
    This paper presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral element method and relying on the arbitrary Lagrangian--Eulerian kinematic description for moving the grid. Selected results showing compatibility of this mesh-update technique with spectral element method are given
    • …
    corecore