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Abstract

In this work we will introduce and analyze the Arbitrary Lagrangian Eulerian formulation for a model problem of a

scalar advection–diffusion equation defined on a moving domain. Moving from the results illustrated in our previous

work [J. Num. Math. 7 (1999) 105], we will consider first and second-order time advancing schemes and analyze how the

movement of the domain might affect accuracy and stability properties of the numerical schemes with respect to their

counterpart on fixed domains. Theoretical and numerical results will be presented, showing that stability properties are

not, in general, preserved, while accuracy is maintained.
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1. Introduction

One of the most used techniques for the numerical simulation of partial differential equations on moving

domains is the so-called Arbitrary Lagrangian Eulerian (ALE) formulation. In this formulation the partial

time derivative is expressed with respect to a reference fixed configuration. A special homeomorphic map,

called the ALE map At : X0 ! XðtÞ associates, at each time t, a point in the current computational domain

XðtÞ to a point in the reference domain X0.

In this way, the ODE system resulting after space discretization actually describes the evolution of the

solution along trajectories that are at all times contained in the computational domain. The ALE mapping

is somehow arbitrary, apart from the requirement of conforming to the evolution of the domain boundary,
which is either a given data or the result of the coupling with other differential models. The latter is the case,

for instance, when treating fluid-structure interaction problems where the position of the fluid domain
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boundary is provided through the interaction with a mechanical model. The map of the boundary oX0 of
the reference domain has then to provide, at all t, the boundary of the current configuration XðtÞ.

In a numerical simulation we are concerned with the evolution of the discrete domain, typically built as

the assembly of the elements of a computational grid. The discrete ALE map describes the evolution of the

grid during the domain movement. It is indeed at discrete level that the advantage of the ALE formulation

emerges, as in an ALE setting the time advancing scheme provides directly the evolution of the unknowns

at mesh nodes, and thus, in a classic finite element setting, that of the degrees of freedom of the discrete

problem at hand.

Several issues have however to be addressed when using the ALE formulation in a finite element context.
What is the minimal regularity for the ALE mapping to ensure the well-posedness of the differential

problem in the ALE formulation? What type of finite element discretization is appropriate for the discrete

ALE mapping in relation to the finite element space chosen for the numerical solution? How the stability of

the numerical scheme is affected by the mesh movement? These are some of the questions addressed by the

authors in [4] for a model advection–diffusion problem. In particular, in this reference it is shown how the

fulfillment of the so called Geometric Conservation Law is a sufficient condition for the Backward Euler

implicit scheme to be unconditionally stable. In fact the ALE formulation introduces an additional

advection term, which is related to the grid velocity (i.e. the time derivative of the discrete ALE mapping).
The stability of the time advancing scheme may be affected by this term, which is normally difficult to

control.

The Geometric Conservation Law (GCL) was originally introduced in [12] and has been recently dealt in

more details by Fahrat and coworkers. More specifically its significance in a finite volume context and for

aero-elasticity problems has been tackled in [6,9], while in [7] a procedure is given to build schemes for

unstructured dynamic meshes that show (by numerical experimentation) a second-order time accuracy. The

GCL condition is, in fact, a request of strong consistency of the discrete problem with respect to constant

solutions: the numerical scheme must be able to exactly represent constant solutions. In [4] its significance
for finite element formulations on moving grids is further clarified by establishing a clear link with the

degree of exactness of the time advancing scheme. In [3] it is shown how for a scalar non-linear hyperbolic

conservation law discretized by means of monotone numerical fluxes, the satisfaction of GCL is a sufficient

and necessary condition for the numerical scheme to preserve a maximum principle when applied on

moving meshes. However, in a later work [5], the same authors, by means of truncation error arguments,

show that the GCL is not a necessary condition to obtain a (formally) second-order time accurate scheme.

In that work finite volume schemes are considered, applied to aero-elastic problems.

In the present work, we reach the same conclusions by considering the finite element discretization of a
model scalar advection–diffusion problem. We will consider first and second-order time advancing schemes

and analyze how the domain movement might affect the stability and accuracy properties of the numerical

schemes with respect to their counterpart on fixed domains and what role does the GCL play with this

respect. The numerical tests presented in Section 5 show that time accuracy of the numerical schemes is

preserved irrespectively to the satisfaction of the GCL, provided the domain movement is suitably inter-

polated. Conversely, we will show, both theoretically and numerically, that the stability of the most known

second-order unconditionally stable (on fixed grids) schemes is affected by the domain movement, whether

or not the GCL is satisfied, with the only exception of the backward Euler case, as already shown in [4].
This in practice means that a condition on the time step has to be imposed to ensure stability. However,

although the results presented in Section 5 show a spurious ‘‘energy production’’ as a consequence of the

moving mesh, we were actually unable to find a test case where the simulation would blow-up. This

probably shows that in practice (at least for linear problems) the instability induced by the domain

movement is mild.

The paper is organized as follows. In Section 2 we introduce the finite element formulation in ALE

frame. In Section 3 we recall, for the sake of completeness, the principal results obtained in our previous
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work. In Section 4 we derive stability inequalities for two second-order schemes (namely Crank–Nicolson
and second-order backward finite difference scheme) and prove a conditional stability for both of them. In

Section 5 we analyze numerically the stability and accuracy of the different schemes. Finally, in Section 6 we

draw some conclusions.
2. ALE formulation and finite element approximation

Let us consider the following model problem defined on a moving domain Xt � Rd , t 2 I � ðt0; T Þ:

ou
ot

þ $ � ðbuÞ � lDu ¼ f in Xt; t 2 I

u ¼ u0 in X0; t ¼ t0
u ¼ uD on oXt; t 2 I ;

ð1Þ

where b is a convection velocity, which is assumed to satisfy $ � b ¼ 0, l a constant diffusivity, D indicates

the Laplacian operator and uD is an assigned boundary condition of Dirichlet type.
For this problem, and for the homogeneous case uD ¼ 0, an a priori energy inequality can be easily

obtained (see for instance [4]), and it reads

uðtÞk k2L2ðXtÞ þ l
Z t

t0

$uðsÞk k2L2ðXsÞ ds6 uðt0Þk k2L2ðXt0 Þ
þ ð1þ CXÞ

l

Z t

t0

f ðsÞk k2H�1ðXsÞ ds; 8t 2 I ; ð2Þ

where we have denoted by CX the constant appearing in the Poincar�e inequality:

vk k2L2ðXtÞ 6CX $vk k2L2ðXtÞ; 8v 2 H 1
0 ðXtÞ:

The Sobolev spaces H 1ðXÞ and H�1ðXÞ and the corresponding norms are defined in the standard way

(see, for instance, [2,11]).

The Arbitrary Lagrangian Eulerian (ALE) formulation recasts the original problem (1) on a reference

fixed configuration, say X0 (this might be, for instance, the domain configuration at time t ¼ t0).
Let At be a family of mappings, hereafter called ALE mappings, which at each t 2 I associate a point Y

of the reference configuration X0 to a point x on the current domain configuration Xt:

At : X0 � Rd ! Xt � Rd ; xðY; tÞ ¼ AtðYÞ:
We assume At to be an homeomorphism, that is At 2 C0ðX0Þ is invertible with inverse A�1

t 2 C0ðXtÞ.
Furthermore, we assume that the application t ! xð�; tÞ is differentiable almost everywhere in ½t0; T �. We

may note that the mapping is in fact rather arbitrary, apart from the requirement that, for all t 2 I ,
AtðoX0Þ ¼ oXt.

We name Y 2 X0 the ALE coordinate while x ¼ xðY; tÞ will be addressed as the spatial (or Eulerian)

coordinate. For the sake of notation, we put Xt � I ¼ fðx; tÞjx 2 Xt; t 2 Ig.
Let f : Xt � I ! R. We will indicate with f̂ :¼ f �At the corresponding function on the ALE frame, i.e.

f̂ : X0 � I ! R; f̂ ðY; tÞ ¼ f ðAtðYÞ; tÞ:
Note that the composition operator applies only to the spatial variables, being the time variable t left

unchanged by the mapping. We will adopt the symbol of
ot

��
Y
to indicate the ALE time derivative, defined as

of
ot

����
Y

: Xt � I ! R;
of
ot

����
Y

ðx; tÞ ¼ of̂
ot

ðY; tÞ; Y ¼ A�1
t ðxÞ: ð3Þ
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For analogy, from now on we will use of
ot

��
x
for the partial time derivative in the Eulerian frame. Finally,

we define the domain velocity ŵ as

ŵðY; tÞ ¼ ox

ot

����
Y

ðY; tÞ; ð4Þ

and indicate with w the corresponding function in Xt � I . We have that

of
ot

����
Y

¼ of
ot

����
x

þ ox

ot

����
Y

� $xf ¼ of
ot

����
x

þ w � $xf : ð5Þ

The model problem (1) in the ALE frame then reads [4]

ou
ot

����
Y

� w � $xuþ $x � ðbuÞ � lDxu ¼ f for x 2 Xt; t 2 I

u ¼ u0 for x 2 X0; t ¼ t0
u ¼ uD for x 2 oXt; t 2 I ;

ð6Þ

where we have indicated the gradient, divergence and Laplace operators with $x, $x� and Dx, respectively,

to underline that the space derivatives are taken with respect to the Eulerian coordinate x. Formulation (6)

will be referred to as the non-conservative ALE formulation.
Whenever the conservative properties of the problem are important, a conservative formulation may be

desirable. This is readily obtained by noting that [1]

oJAt

ot

����
Y

¼ JAt$x � w; ð7Þ

where JAt is the Jacobian of the ALE mapping

JAt ¼ detðJAtÞ; and JAt ¼
ox

oY
:

We have, then,

1

JAt

oðJAt uÞ
ot

����
Y

¼ ou
ot

����
Y

þ 1

JAt

oJAt

ot

����
Y

u ¼ ou
ot

����
Y

þ u$x � w

and the differential equation in (1) can be rewritten in the following conservative ALE form

1

JAt

oJAt u
ot

����
Y

þ $x � ðb½ � wÞu� l$xu� ¼ f for x 2 Xt; t 2 I : ð8Þ
Remark 1. We may also introduce the mapping As
r : Xs ! Xr, being s; r 2 I , as

As
r ¼ Ar �A�1

s :

For the sake of notation, however, whenever we have to integrate a quantity uðrÞ : Xr ! R on a con-

figuration Xs with s 6¼ r, we will simply write
R
Xs
uðrÞdX instead of the (formally more correct) expressionR

Xs
uðrÞ �As

r dX. Analogously, we will use kuðrÞkL2ðXsÞ as a short-hand notation of kuðrÞ �As
rkL2ðXsÞ and so on.

2.1. Finite element ALE formulation

We briefly recall the set up for the finite element formulation in an ALE frame that has been developed

in [4].
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Let XhðX0Þ � H 1ðX0Þ be a finite element space defined on the reference configuration X0. The finite
element space on the current configuration is constructed by the help of the ALE mapping as

XhðXtÞ ¼ fwh : Xt � I ! R; wh ¼ bwh �A�1
t ; bwh 2 XhðX0Þg: ð9Þ

In most cases, the ALE mapping is, on its turn, represented by means of finite elements and is computed,

for instance, by solving a suitable PDE, given the displacement of the domain boundary. Clearly, if this is

the case, the domain boundary will not be exactly represented. Yet since this aspect is not crucial for the
analysis that we will carry out in this paper, we will continue to indicate the computational domain by Xt,

for the sake of simplicity.

Let N be the set of nodes of the finite element mesh and Nint � N that containing just the internal

nodes. The set of Lagrange basis functions on the reference configuration X0 is indicated by

fŵi; ŵi 2 XhðX0Þ; i 2 Ng;
and forms a basis of XhðX0Þ, while fŵi; i 2 Nintg forms a basis of X0;hðX0Þ ¼ XhðX0Þ \ H 1

0 ðX0Þ.
Correspondingly, we indicate with wi the finite element basis function on the triangulation of Xt, defined

as

wi ¼ ŵi �A�1
t ; i 2 N:

For each t 2 I the numerical solution uh may then be expressed as a linear combination of nodal finite

element basis functions, i.e.

uhðx; tÞ ¼
X
i2N

wiðx; tÞuiðtÞ; ð10Þ

with time dependent coefficients uiðtÞ. The major difference with standard finite element formulation for

time-dependent problems is that here the finite element basis functions depend on time because of the ALE

mapping.

Then, the finite element approximation of the non-conservative formulation (6) may be written as

Semi-discrete non-conservative formulation

For all t 2 I , find uh 2 XhðXtÞ such thatZ
Xt

ouh
ot

����
Y

wh dXþ l
Z
Xt

$xuh � $xwh dXþ
Z
Xt

$x � ðbuhÞ½ � w � $xuh�wh dX ¼
Z
Xt

fwh dX 8wh 2 X0;hðXtÞ

ð11Þ
with

uh ¼ uDh for x 2 oXt; t 2 I ð11aÞ

uh ¼ u0h for x 2 X0; t ¼ t0: ð11bÞ
uD;h and u0;h being suitable finite element approximations of uD and u0, respectively.

By denoting by U ¼ fuigi2N the vector of nodal values of uh (which are, of course, functions of time), we
may express (11) in an algebraic form as

MðtÞ dUðtÞ
dt

þHðtÞUðtÞ � Bðt;wðtÞÞUðtÞ ¼ FðtÞ; t 2 I ð12Þ

plus

uiðtÞ ¼ uD;hðxi; tÞ; i 2 N nNint ð13aÞ
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and

uiðt0Þ ¼ u0;hðxiÞ; i 2 N: ð13bÞ
Here,

MðtÞ ¼
Z
Xt

wiðtÞwjðtÞdX
� �

i2Nint ;j2N

is the mass matrix, while H and B are defined as

HðtÞ ¼
Z
Xt

$x � ðbwjðtÞÞwiðtÞdX
�

þ l
Z
Xt

$xwjðtÞ � $xwiðtÞdX
�

i2Nint;j2N
;

Bðt;wÞ ¼
Z
Xt

ðwðtÞ � $xwjðtÞÞwiðtÞdX
� �

i2Nint ;j2N
;

and

FðtÞ ¼
Z
Xt

f ðtÞwiðtÞdX
� �

i2Nint

:

This formulation differs from the one usually obtained in the finite element method when the unknowns

on the Dirichlet portion of the boundary are statically eliminated, producing a system with square matrices
M, H and B and a modified right-hand side. Yet, this equivalent formulation is here preferred for the

further discussion.

On the other hand, the finite element approximation of the conservative formulation (8) may be written

as

Semi-discrete conservative formulation

For each t 2 I , find uh 2 XhðXtÞ such that

d

dt

Z
Xt

uhwh dXþ l
Z
Xt

$xuh � $xwh dXþ
Z
Xt

$x � ðb½ � wÞuh�wh dX ¼
Z
Xt

fwh dX 8wh 2 X0;hðXtÞ; ð14Þ

with (11a) and (11b) as initial and boundary conditions, respectively.

Equivalently, the algebraic form reads:

d

dt
MðtÞUðtÞð Þ þ HðtÞð � Aðt;wðtÞÞ � Bðt;wðtÞÞÞUðtÞ ¼ FðtÞ: ð15Þ

Here,

Aðt;wÞ ¼
Z
Xt

$x � wðtÞwjðtÞwiðtÞdX
� �

i2Nint ;j2N
:

Both (12) and (15) are systems of ordinary differential equations and they may be put into the general

form

dyðtÞ
dt

¼ g1ðt;UðtÞÞ þ gwðt;UðtÞÞ; t 2 I ; ð16Þ

where g1ðt;UðtÞÞ accounts for the diffusive and convective terms, gwðt;UðtÞÞ is the term that depends on the
domain velocity w, while
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yðtÞ ¼ UðtÞ non-conservative formulation;
MðtÞUðtÞ; conservative formulation:

�

We observe that the differential system is not autonomous even in the case of steady boundary condi-

tions and forcing term, since g1 and gw depend on time not only through U, but also because of the domain

movement.

We now recall the definition of the Geometric Conservation Laws (GCL) as given, for instance in

[4,8,13].

Definition 1. A numerical scheme posed on a moving domain satisfies the Geometric Conservation Laws if

it is able to reproduce exactly a constant solution.

Clearly, we are assuming that the constant solution is admissible for the problem at hand. This is indeed

the case whenever f ¼ 0 and the boundary and initial conditions are appropriately chosen. It has been

shown in [4] that the non-conservative formulation (12) satisfies the GCL provided that all space integrals

are computed exactly, irrespectively to the time-advancing scheme adopted.

On the contrary, the conservative formulation (15) satisfies the GCL only if the identity

d

dt

Z
Xt

wi dX ¼
Z
Xt

wi$x � wdX; 8i 2 Nint; ð17Þ

which expresses the conservation of purely geometrical quantities, is satisfied at discrete level. Algebraically

(17) is equivalent to

d

dt
MðtÞ1ð Þ ¼ gwðt; 1Þ ¼ Aðt;wðtÞÞ1;

where 1 2 RN indicates a vector of all unit elements, being N ¼ cardðNÞ. We may then affirm that a time

advancing scheme satisfies the GCL whenever it solves exactly the problem

dMðtÞzðtÞ
dt

¼ Aðt;wðtÞÞzðtÞ; t 2 I

zðt0Þ ¼ 1;

8<
: ð18Þ

i.e. it should return zn ¼ zðtnÞ ¼ 1 for all n such that tn 6 T .
In [4] we proposed another, stronger, characterization of the GCL that is more appropriate in a finite

element context. Precisely, it is required that the discrete system should satisfy exactly the identity

d

dt

Z
Xt

wiwj dX ¼
Z
Xt

wiwj$x � wdX; 8i; j 2 N: ð19Þ

In particular, this implies that, for any vector d 2 RN , the time advancing scheme should be able to solve

exactly

dMðtÞzðtÞ
dt

¼ Aðt;wðtÞÞzðtÞ; t 2 I

zðt0Þ ¼ d;

8<
: ð20Þ

i.e. it should return zn ¼ zðtnÞ ¼ d for all n such that tn 6 T .
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3. First-order time discretization schemes

Let t0 < t1 < � � � < tM ¼ T be a uniform partition of I ¼ ½t0; T � with time step Dt and yn an approximation

of yðtnÞ. In [4] we have analyzed the following modified implicit Euler scheme,

ynþ1 � yn ¼ Dt
Xm
l¼0

xl g1ðtnl ;Unþ1Þ
�

þ gwðtnl ;Unþ1Þ
�
; ð21Þ

where xl and tnl are the weights and knots of a quadrature rule I in ½tn; tnþ1� such that

Iðf Þ ¼ Dt
Xm
l¼0

xlf ðtnl Þ �
Z tnþ1

tn
f ðsÞds:

Observe that, if the quadrature rule is taken simply as Iðf Þ ¼ Dtf ðtnþ1Þ, we recover the classic implicit

Euler scheme.

In the case of the conservative formulation (y ¼ MU ), it is immediately verified that scheme (21), when

applied to (18), satisfies the GCL if and only if the chosen quadrature rule integrates exactly the termR tnþ1

tn Aðs;wðsÞÞds, that is, if the following relation holds 8i 2 Nint

Dt
Xm
l¼0

xl

Z
Xtn

l

wiðtnl Þ$x � wðtnl ÞdX ¼
Z tnþ1

tn

Z
Xs

wiðsÞ$x � wðsÞdXds: ð22Þ

This relation guarantees that the conservation of the geometric quantities expressed by (17) also holds at

discrete level.
It can be shown [4] that (22) also implies, for all i; j 2 N,

Dt
Xm
l¼0

xl

Z
Xtn

l

wiðtnl Þwjðtnl Þ$x � wðtnl ÞdX ¼
Z tnþ1

tn

Z
Xs

wiðsÞwjðsÞ$x � wðsÞdXds; ð23Þ

and consequently the time advancing scheme would solve exactly (20) as well.

Apart from very particular cases, the domain movement, and thus At and w, is not known a priori. For

instance, this is the situation in fluid structure interaction or free surface flow problems. In these cases,
however, in the course of the computation, the position of the computational domain boundary is given at

time stations tj, with j ¼ 0; 1; . . . ;M , and an ALE mapping may be computed at those instants, for instance

by employing an harmonic extension of the boundary position.

The mapping As at intermediate instants s 2 ½tj; tjþ1� may then be obtained by interpolation from

Atjþ1 ;Atj ;Atj�1 ; . . . with a polynomial of degree pP 1. Observe that the reconstructed ALE mapping

As; 8s 2 ½tj; tjþ1� provides automatically the reconstruction for the domain velocity since w ¼ oAs
os

��
Y
. It is

then reasonable to assume that the ALE map, and the domain velocity, is a piecewise polynomial in time.

The following two results have been given in [4]:

Proposition 1. A sufficient condition for the scheme (21) to fulfill the GCL (i.e. to satisfy (22), or equivalently,
(23)) is to use a quadrature rule I of degree of exactness equal or grater than d � p � 1, where d is the space
dimension and p is the degree of the polynomial used to reconstruct in time the ALE mapping within each time
step.

For a linear in time reconstruction of the ALE mapping (p ¼ 1) a mid-point quadrature rule is sufficient

for a 2D problem to fulfill the GCL, whereas in a 3D problem we should employ, for instance, a two point
Gaussian quadrature rule.
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Proposition 2. Whenever the scheme (21) is applied to the conservative formulation (15) and the quadrature
rule I is sufficient to fulfill the GCL and has positive weights xl; l ¼ 0; . . . ;m, then the scheme (21) is
unconditionally stable and the following a priory estimate holds:

unþ1
h

�� ��2

L2ðXtnþ1 Þ
þ Dtl

Xn

i¼0

Xm
l¼0

xl $xuiþ1
h

�� ��2

L2ðXti
l
Þ 6 u0h

�� ��2

L2ðXt0 Þ
þ Dt

ð1þ CXÞ
l

Xn

i¼0

Xm
l¼0

xl f ðtilÞ
�� ��2

H�1ðXti
l
Þ:

ð24Þ
Remark 2. The quantity unh ¼
P

i2N uniwiðtnÞ may be readily extended to any other configuration XðsÞ with
s 6¼ tn, since

unh �As
tn ¼

X
i2N

uniwiðsÞ:

This extension has been implicitly assumed whenever required.

In the cited reference it is also shown that the same scheme (21), applied to the non-conservative for-
mulation (12) is, in general, only conditionally stable, with a maximum allowable time step that depends on

the domain velocity w.

Remark 3. The results of Proposition 2 also holds if the quadrature rule with the appropriate degree of

exactness is applied just to the term gw, which is the only one actually involved in the GCL. In particular, we

could have considered the following alternative GCL-satisfying scheme

ynþ1 ¼ yn þ Dtg1ðtnþ1;Unþ1Þ þ Dt
Xm
l¼0

xlgwðtnl ;U
nþ1Þ: ð25Þ

It can be easily shown that an a priori stability inequality very similar to (24) can be obtained as well.

Yet, scheme (21) may be more convenient from a programming point of view since we will treat all the

terms in the same way.
4. Second-order time discretization schemes

The stability result given in the previous section shows that for the implicit Euler scheme the GCL are

sufficient conditions to preserve the stability properties that the scheme features when applied to a

parabolic problem on a fixed domain. Unfortunately, we will see in this section that this remarkable

result is not so general as we would like. We will here consider two second-order time discretization

schemes, namely, the Crank–Nicolson and the second-order backward difference (hereafter BDF(2)).

Both of them are unconditionally stable when applied to problems on a fixed domain. We will show

that, even in the case where the GCL are satisfied, standard techniques to produce energy estimates of
the numerical solution lead to inequalities where a few terms, deriving from the domain movement, have

a sign that cannot be a priori determined. The numerical tests presented in a later section confirm that

an additional energy contribution to the numerical solution may occur because of the boundary

movement. We point out that in the a priori estimate (2) the domain deformation does not contribute to

the energy of the system in the differential problem, therefore this extra energy contribution is a

numerical artifact.
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4.1. The Crank–Nicolson method

We will consider here a slight modification to the classical Crank–Nicolson method that, for the problem

(16) reads:

ynþ1 � yn ¼ Dt g1 tnþ
1
2;
Unþ1 þUn

2

� �	
þ gw tnþ

1
2;
Unþ1 þUn

2

� �

: ð26Þ

More precisely, this scheme is a Gauss–Legendre implicit Runge–Kutta method of order 2. However,

with a little abuse on notations, we will refer to it as the Crank–Nicolson method, since it reduces to the

latter for a linear advection–diffusion equation on a fixed domain and with time-independent coefficients.
Observe that the right hand side of (26) is an approximation ofZ tnþ1

tn
g1 s;UðsÞð Þ½ þ gw s;UðsÞð Þ�ds;

by means of a mid-point rule. For 2D problems, this approximation, when applied to the conservative
formulation, will automatically satisfy the GCL if the ALE mapping is reconstructed linearly in time in

each time slab.

In the more general case, we should employ a more accurate quadrature rule, at least for the terms in

gw that are related to the domain movement, according to the criterion given in Proposition 1. For instance

we may use

ynþ1 � yn ¼ Dt
Xm
l¼0

xl g1 tnl ;
Unþ1 þUn

2

� �	
þ gw tnl ;

Unþ1 þUn

2

� �

: ð27Þ

Here m, tnl and xl are chosen so that the resulting scheme satisfies the GCL.

We are going now to study the stability of this scheme, when applied to the conservative formulation

with homogeneous boundary conditions. Scheme (27) is then equivalent toZ
Xtnþ1

unþ1
h wh dX�

Z
Xtn

unhwh dXþ Dt
Xm
l¼0

xl

Z
Xtn

l

l$x

unþ1
h þ unh

2
� $xwh dX

þ Dt
Xm
l¼0

xl

Z
Xtn

l

$x � ðb
	

� wðtnl ÞÞ
unþ1
h þ unh

2



wh dX

¼ Dt
Xm
l¼0

xl

Z
Xtn

l

f ðtnl Þwh dX; 8wh 2 X0;hðXtÞ; n ¼ 0; 1; . . . ð28Þ

with

uih ¼ 0 on oXt; i 2 N nNint

u0h ¼ u0h in X0:

As mentioned before, this scheme satisfies the GCL. Thus, an immediate consequence of (23) is that

vhk k2L2ðXtnþ1 Þ � vhk k2L2ðXtn Þ ¼ Dt
Xm
l¼0

xl

Z
Xtn

l

jvhj2$x � wðtnl ÞdX: ð29Þ

for any finite element function vhðx; tÞ ¼
P

i2N viwiðx; tÞ with coefficients vi that do not depend on t.
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We will first derive the following result:

Lemma 1. The discrete solution unh of scheme (28) satisfies the inequality

unþ1
h

�� ��2

L2ðXtnþ1 Þ
þ Dt

4
l
Xm
l¼0

xl $xðunþ1
h

�� þ unhÞ
��2

L2ðXtn
l
Þ �

Dt
4

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h � unhj

2
dX

6 unh
�� ��2

L2ðXtn Þ
þ Dt

ð1þ CXÞ
l

Xm
l¼0

xl f ðtnl Þ
�� ��2

H�1ðXtn
l
Þ ð30Þ

for all n ¼ 0; 1; . . . :

Proof. We take in (28) wh ¼ ðunþ1
h þ unhÞ and we use the identity

ða; aþ bÞ ¼ 1

2
kak2 þ 1

2
kaþ bk2 � 1

2
kbk2

to write the first two terms in (28) asZ
Xtnþ1

unþ1
h ðunþ1

h þ unhÞdX�
Z
Xtn

unhðunþ1
h þ unhÞdX

¼ 1

2
unþ1
h

�� ��2

L2ðXtnþ1 Þ
þ 1

2
unþ1
h

�� þ unh
��2

L2ðXtnþ1 Þ
� 1

2
unh

�� ��2

L2ðXtnþ1 Þ
� 1

2
unh

�� ��2

L2ðXtn Þ

� 1

2
unþ1
h

�� þ unh
��2

L2ðXtn Þ
þ 1

2
unþ1
h

�� ��2

L2ðXtn Þ

¼ unþ1
h

�� ��2

L2ðXtnþ1 Þ
� unh
�� ��2

L2ðXtn Þ
� 1

2
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

� 1

2
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunhj
2
dX

2
4 �

Z
Xtn

l

$x � wðtnl Þjunþ1
h þ unhj

2
dX

3
5

¼ unþ1
h

�� ��2

L2ðXtnþ1 Þ
� unh
�� ��2

L2ðXtn Þ
þ Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þunþ1
h unh dX; ð31Þ

where we have exploited relation (29) with vh ¼ unþ1
h , vh ¼ unh, and vh ¼ ðunþ1

h þ unhÞ. Then, Eq. (28), with
wh ¼ ðunþ1

h þ unhÞ, becomes, after integration by parts of the convective term

unþ1
h

�� ��2

L2ðXtnþ1 Þ
� unh
�� ��2

L2ðXtn Þ
þ Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þunþ1
h unh dX

þ Dt
l
2

Xm
l¼0

xl $xðunþ1
h

�� þ unhÞ
��2

L2ðXtn
l
Þ �

Dt
4

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h þ unhj

2
dX

6Dt
ð1þ CXÞ

l

Xm
l¼0

xl f ðtnl Þ
�� ��2

H�1ðXtn
l
Þ þ Dt

l
4

Xm
l¼0

xl $xðunþ1
h

�� þ unhÞ
��2

L2ðXtn
l
Þ ð32Þ

and the thesis follows immediately. h

Remark 4. This modified version of the Crank–Nicolson scheme allowed us to exploit directly the coer-

civity of the bilinear form stemming from the Laplace operator to obtain our result. This would have not
been possible with the standard scheme, as a consequence of the domain movement.
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Remark 5. If $x � w < 0; 8x 2 Xt and 8t 2 I (i.e. in the case of a uniform contraction of the domain), we can

obtain from (30) an unconditioned stability result like the one previously obtained for the implicit Euler

scheme. In the more general case we can only obtain a conditioned stability where the maximum allowable

time step depends on $x � w. More details may be found in [10].

Remark 6. In the previous example we enforced the GCL by employing a more accurate quadrature rule to

both the terms g1 and gw. Clearly, we could have applied the more sophisticated quadrature rule only to the

term gw. This is enough, indeed, to fulfill the GCL. Yet, the former scheme may be preferable from a
programming point of view since we will treat all terms in the same way.

4.2. The second-order backward difference scheme BDF(2)

The second-order backward difference scheme applied to (16) reads:

3

2
ynþ1 � 2yn þ 1

2
yn�1 ¼ g1 tnþ1;Unþ1

� �
þ gwðtnþ1;Unþ1Þ; nP 1: ð33Þ

This scheme can be initialized by a one-step second-order method such as, for instance, the Crank–
Nicolson one presented in the previous section.

This scheme does not satisfy the GCL in general, when applied to the conservative formulation.

However, we observe that

3

2
ynþ1 � 2yn þ 1

2
yn�1 ¼ 3

2

Z tnþ1

tn
gðs;UðsÞÞds� 1

2

Z tn

tn�1

gðs;UðsÞÞds; ð34Þ

where we have set g ¼ g1 þ gw. We can thus modify scheme (33) by using a more accurate quadrature rule

to integrate the two terms in the right hand side (while keeping UðtÞ ¼ Unþ1). If we carry out this procedure

on the whole g, however, we will destroy the coerciveness of the form g1 since the second integral appears

with a negative sign. Consequently, to impose the GCL compliance to the BDF(2) scheme we are obliged to

operate on the term gw only. The modified scheme reads then, in a general form:

3

2
ynþ1 � 2yn þ 1

2
yn�1 ¼ g1ðtnþ1;Unþ1Þ þ 3

2
Dt

Xm
l¼0

xlgwðtnl ;U
nþ1Þ � 1

2
Dt

Xm
l¼0

xlgwðtn�1
l ;Unþ1Þ: ð35Þ

This scheme satisfies the GCL provided that the quadrature rule employed for gw fulfills the require-
ments given in Proposition 1.

This scheme has already been proposed by Farhat and Koobus [7] in the context of a finite volume

approximation.

In the remaining part of this section, we will derive a stability result for the BDF(2) scheme (35).

Again, for the sake of clarity, we rewrite this scheme in the equivalent form

3

2

Z
Xtnþ1

unþ1
h wh dX� 2

Z
Xtn

unhwh dXþ 1

2

Z
Xtn�1

un�1
h wh dX

þ Dt
Z
Xtnþ1

l$xunþ1
h � $xwh

�
þ $x � ðbunþ1

h Þ
�
wh dX

� 3

2
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � ðwðtnl Þunþ1
h Þwh dXþ 1

2
Dt

Xm
l¼0

xl

Z
X
tn�1
l

$x � ðwðtn�1
l Þunþ1

h Þwh dX

¼ Dt
Z
Xtnþ1

f nþ1wh dX 8wh 2 X0;hðXtÞ: ð36Þ
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We will prove the following result:

Lemma 2. The discrete solution unh of scheme (36) satisfies the inequality

enþ1
h þ Dtl $xunþ1

h

�� ��2

L2ðXtnþ1 Þ
þ Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

þ Dt
Xm
l¼0

Z
X
tn�1
l

$x � wðtn�1
l Þ junþ1

h j2


� 2unþ1
h unh

�
dX6 enh þ Dt

ð1þ CXÞ
l

f nþ1
�� ��2

H�1ðXtnþ1 Þ
ð37Þ

for all n ¼ 1; 2; . . ., where

enh ¼
1

2
unh

�� ��2

L2ðXtn Þ
þ 1

2
2unh

�� � un�1
h

��2

L2ðXtn�1 Þ
:

Proof. Let us take wh ¼ unþ1
h in (36). The first three terms can be developed in the following way

I ¼ 3

2

Z
Xtnþ1

junþ1
h j2 dX� 2

Z
Xtn

unhu
nþ1
h dXþ 1

2

Z
Xtn�1

un�1
h unþ1

h dX

¼ 3

2

Z
Xtn

junþ1
h j2 dX� 2

Z
Xtn

unhu
nþ1
h dXþ 1

2

Z
Xtn

un�1
h unþ1

h dXþ 3

2
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

� 1

2
Dt

Xm
l¼0

xl

Z
X
tn�1
l

$x � wðtn�1
l Þun�1

h unþ1
h dX ð38Þ

where we have employed relation (29) with vh ¼ unþ1
h and v2h ¼ un�1

h unþ1
h . Let us observe, now, that

3

2

Z
Xtn

junþ1
h j2 dX� 2

Z
Xtn

unhu
nþ1
h dXþ 1

2

Z
Xtn

un�1
h unþ1

h dX

¼ 1

2

Z
Xtn

unþ1
h

�
� 2unh þ un�1

h

�
unþ1
h dXþ 1

2

Z
Xtn

2unþ1
h

�
� unh

�
2unþ1

h dX�
Z
Xtn

junþ1
h j2 dX

¼ 1

4
unþ1
h

�� ��2

L2ðXtn Þ
þ 1

4
unþ1
h

�� � 2unh þ un�1
h

��2

L2ðXtn Þ
� 1

4
2unh

�� � un�1
h

��2

L2ðXtn Þ

þ 1

4
2unþ1

h

�� ��2

L2ðXtn Þ
þ 1

4
2unþ1

h

�� � unh
��2

L2ðXtn Þ
� 1

4
unh

�� ��2

L2ðXtn Þ
� unþ1

h

�� ��2

L2ðXtn Þ

¼ 1

4
unþ1
h

�� ��2

L2ðXtn Þ

�
þ 1

4
2unþ1

h

�� � unh
��2

L2ðXtn Þ

�
þ 1

4
unþ1
h

�� � 2unh þ un�1
h

��2

L2ðXtn Þ

� 1

4
unh

�� ��2

L2ðXtn Þ

�
þ 1

4
2unh

�� � un�1
h

��2

L2ðXtn Þ

�
: ð39Þ

Then, applying (39) in (38) we obtain

I ¼ 1

4
unþ1
h

�� ��2

L2ðXtn Þ
þ 1

4
2unþ1

h

�� � unh
��2

L2ðXtn Þ
þ 1

4
unþ1
h

�� � 2unh þ un�1
h

��2

L2ðXtn Þ
� 1

4
unh

�� ��2

L2ðXtn Þ

� 1

4
2unh

�� � un�1
h

��2

L2ðXtn Þ
þ 3

2
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

� 1

2
Dt

Xm
l¼0

xl

Z
X
tn�1
l

$x � wðtn�1
l Þun�1

h unþ1
h dX
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¼ 1

4
unþ1
h

�� ��2

L2ðXtnþ1 Þ

�
þ 1

4
2unþ1

h

�� � unh
��2

L2ðXtn Þ

�
þ 1

4
unþ1
h

�� � 2unh þ un�1
h

��2

L2ðXtn�1 Þ

� 1

4
unh

�� ��2

L2ðXtn Þ

�
þ 1

4
2unh

�� � un�1
h

��2

L2ðXtn�1 Þ

�
þ 5

4
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

þ Dt
4

Xm
l¼0

xl

Z
X
tn�1
l

$x � wðtn�1
l Þ unþ1

h

�h
� 2unh þ un�1

h

�2 � 2unh
�

� un�1
h

�2 � 2un�1
h unþ1

h

i
dX

¼ 1

2
ðenþ1

h � enhÞ þ
1

4
unþ1
h

�� � 2unh þ un�1
h

��2

L2ðXtn�1 Þ
þ 5

4
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

þ 1

4
Dt

Xm
l¼0

xl

Z
X
tn�1
l

$x � wðtn�1
l Þ junþ1

h j2


� 4unþ1
h unh

�
dX:

Finally, by integrating by parts the convective terms in (36) and employing the previous result we have

1

2
ðenþ1

h � enhÞ þ
1

4
unþ1
h

�� � 2unh þ un�1
h

��2

L2ðXtn�1 Þ
þ 1

2
Dt

Xm
l¼0

xl

Z
Xtn

l

$x � wðtnl Þjunþ1
h j2 dX

þ 1

2
Dt

Xm
l¼0

xl

Z
X
tn�1
l

$x � wðtn�1
l Þ junþ1

h j2


� 2unþ1
h unh

�
dXþ Dtl $xunþ1

h

�� ��2

L2ðXtnþ1 Þ

6Dt
ð1þ CXÞ

2l
f nþ1

�� ��2

H�1ðXtnþ1 Þ
þ Dt

l
2

$xunþ1
h

�� ��2

L2ðXtnþ1 Þ
ð40Þ

from which inequality (37) follows. h

Should the domain be fixed, we would have the following global stability result

enþ1
h þ 1

2

Xn

i¼1

uiþ1
h

�� � 2uih þ ui�1
h

��2

L2ðXÞ
þ Dtl

Xn

i¼1

$xuiþ1
h

�� ��2

L2ðXÞ
6 e1h þ Dt

ð1þ CXÞ
l

Xn

i¼1

f iþ1
�� ��2

H�1ðXÞ ð41Þ

without any condition on Dt.
In the case where the domain moves, we may recover a conditional stability result where the time step is

bounded by quantities depending on the domain movement (more precisely on $x � w). Again we refer to
[10] for more details.

Remark 7. In a fixed domain problem, the quantity enh turns out to be monotonically decreasing whenever

f ¼ 0. Observe that enh ! uhðtnÞk k2L2ðXÞ when Dt ! 0. From (41), we can also quantify the numerical dissi-

pation of the scheme in the term 1
2

Pn
i¼1 uiþ1

h � 2uih þ ui�1
h

�� ��2

L2ðXÞ
.

5. Numerical assessment

We have considered the model advection–diffusion problem (1) in a 2D domain. The ALE mapping has

been constructed by solving a Laplace problem at each time step tn:

DYAtn ¼ 0 in X0

Atn ¼ Yþ gn on oX0

�
ð42Þ

gn being the displacement of the domain boundary at time tn.
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We have considered both a piecewise linear and piecewise quadratic in time interpolations in each time
slab ½tn; tnþ1�. The latter is obtained by interpolating the mappings Atnþ1 , Atn and Atn�1 .

In both cases, we have taken wðY ; tnÞ ¼ limt!tn� wðY ; tÞ since w is discontinuous at the time instants tn.
All the numerical schemes proposed in the previous sections, i.e. the implicit Euler, the Crank–Nicolson

and the BDF(2) schemes in both conservative and non-conservative formulation (in the following indicated

by the suffixes c and nc, respectively) have been implemented. In the non-conservative case, we have

implemented the ‘‘standard version’’ of the aforementioned schemes since there is no need to modify them

in order to satisfy the GCL. On the other hand, for the conservative formulation, we have considered the

‘‘standard’’ time discretization, which, in general, does not satisfy the GCL (in the following indicated with
the suffix noGCL), the modified discretization that satisfies the GCL for a linear in time deformation of the

domain (suffix GCL1) and the one that satisfies the GCL for a quadratic in time domain deformation (suffix

GCL2). The quadrature formula I utilized is the mid-point rule for the schemes GCL1 and the two point

Gaussian quadrature formula for the schemes GCL2. We remind that, for a 2D problem, the Crank–

Nicolson scheme (28) always satisfies the GCL for a linear in time deformation of the domain. Then, in this

case, scheme GCL0 coincides with GCL1.

We present hereafter two test cases. The first one aims at validating the stability results derived in the

previous sections while the second one will focus on time accuracy.
5.1. First test case––stability analysis

We have taken as reference domain X0 the unit 2D square. The domain deformation is given by

x ¼ AtðYÞ :
x1 ¼ Y1½2� cosð20ptÞ�
x2 ¼ Y2½2� cosð20ptÞ�

�
: ð43Þ

We observe that the deformed domain is still a square that expands and contracts periodically with a

period T ¼ 1=10. Moreover, sinceAtðYÞ is linear in Y, by solving a Laplace problem at each time step tn for
the discrete ALE mapping, we recover the deformation given in (43) exactly.

Yet, this deformation is interpolated polynomially in time in each time-slab. Thus, the numerical rep-

resentation of the domain is not exact for t 6¼ tn, n ¼ 1; 2; . . ..
We have considered the problem

ou
ot

� 0:01Du ¼ 0; in Xt

u ¼ 0; on oXt

uð0Þ ¼ 1600Y1ð1� Y1ÞY2ð1� Y2Þ; in X0:

8>><
>>: ð44Þ

Observe that, as a consequence of the stability estimate (2), for such a problem uðtÞk kL2ðXtÞ is a decreasing
quantity.

Problem (44) has been discretized in space with P1 finite elements. The monotonicity property of the L2

norm of the solution is clearly valid for the semi-discrete problem as well.

When problem (44) is defined on a fixed domain, the implicit-Euler and the Crank–Nicolson schemes

preserve that property, i.e. the computed solution unh has a decreasing L2 norm. On the other hand, when

considering a moving domain, starting from our estimates, we should expect that only the implicit Euler

scheme applied to the conservative formulation and satisfying the GCL will preserve that property.

Figs. 1 and 2 show, for the two schemes and the two cases of a linear and a quadratic interpolation of the
domain deformation, the computed quantity unh

�� ��2

L2ðXtn Þ
together with the ‘‘exact’’ norm uhðtÞk k2L2ðXtÞ of the

solution of the semi-discrete problem (computed on the same mesh but with a very small time step) during
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Fig. 1. Test case 1: L2 norm of the computed and ‘‘exact’’ solution as a function of time for the implicit Euler scheme. Interpolation in

time of the domain deformation: linear on the left and quadratic on the right.
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Fig. 2. Test case 1: L2 norm of the computed and ‘‘exact’’ solution as a function of time for the Crank–Nicolson scheme. Interpolation

in time of the domain deformation: linear on the left and quadratic on the right.
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the time interval ½0; 0:4� (corresponding to 4 periods of oscillation of the domain). In all cases we have used

a time step Dt ¼ 0:01.
We can observe that, only the implicit Euler discretization which satisfies the GCL, applied to the

conservative formulation, is strictly monotone, as it was predicted by our estimates.

Furthermore, for the Crank–Nicolson scheme, the L2 norm increases during the expansion of the domain

and decreases during the contraction phase, coherently with estimate (30).

The BDF(2) scheme, even when applied to problem (44) on a fixed domain, does not feature the

monotonicity property of the L2 norm of the solution. On the other hand, as shown by estimate (37), the

quantity which turns out to be decreasing, for a problem on a fixed domain, is enh ¼ 1
2

unh
�� ��2

L2ðXtn Þ
þ 1

2
2unh �

��
un�1
h k2L2ðXtn�1Þ (see Remark 7).

Fig. 3 shows the quantity enh for the different versions of the BDF(2) scheme and for the two cases of a

linear and a quadratic in time interpolation of the domain deformation. On the same picture, we report also
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Fig. 3. Test case 1: quantity enh as a function of time computed by the BDF(2) scheme, compared to the ‘‘exact’’ value

uhðtÞk kL2ðXtÞ ¼ limDt!0 enh. Interpolation in time of the domain deformation: linear on the left and quadratic on the right.
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the norm uhðtÞk kL2ðXtÞ of the ‘‘exact’’ solution. It is evident that the quantity enh is not decreasing, coherently
with estimate (37).

Finally, in Fig. 4, we report the L2 norm unh
�� ��

L2ðXtn Þ
of the solution computed by the BDF(2) scheme. This

figure highlights the dissipation properties of this scheme and should be compared to Figs. 1 and 2.

5.2. Second test case––error analysis in time

We have considered again as reference configuration X0 the unit 2D square. The domain deformation is
given by

x ¼ AtðYÞ :
x1 ¼ Y1½2� cosð10ptÞ�
x2 ¼ Y2½2� cosð10ptÞ� :

�
ð45Þ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

BDF (2)  –  linear  displacement

time

BDF-nc
BDF-c-noGCL
BDF-c-GCL1
exact

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

BDF (2)  –  quadratic  displacement

time

BDFnc
BDF-c-noGCL
BDF-c-GCL1
BDF-c-GCL2
exact

Fig. 4. Test case 1: L2 norm of the computed and ‘‘exact’’ solution as a function of time for the BDF(2) scheme. Interpolation in time

of the domain deformation: linear on the left and quadratic on the right.
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The problem we have considered is

ou
ot

� 0:1Du ¼ f ; in Xt

u ¼ 0; on oXt

uð0Þ ¼ 16Y1ð1� Y1ÞY2ð1� Y2Þ; in X0:

8><
>: ð46Þ

The forcing term f has been chosen in such a way that the corresponding exact solution uðY; tÞ is

uðY; tÞ ¼ 16 1

�
þ 1

2
sinð5ptÞ

�
Y1ð1� Y1ÞY2ð1� Y2Þ:

Problem (46) has been discretized in space with P2 isoparametric elements. Fig. 5 shows the mesh used

(on the left) and the initial solution (on the right).

We have taken a sequence of decreasing time steps Dt ¼ 1=20; 1=40; . . . ; 1=320 and we have computed

the L2 norm of the error at time t ¼ 0:3 over the actual domain Xt. In all cases the error is dominated by the

time discretization. The results obtained are presented in Figs. 6–8 for the implicit Euler, the Crank–

Nicolson and the BDF(2) schemes, respectively.
We observe that all the different implementations of the implicit Euler scheme are linearly convergent in

time while all the Crank–Nicolson ones are quadratically convergent.
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Fig. 6. Test case 3: error in the L2 norm as a function of the time step Dt for the implicit Euler scheme. Interpolation in time of the

domain deformation: linear on the left and quadratic on the right.
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On the contrary, the BDF(2) scheme, applied to the non-conservative formulation or to the conservative

one, without satisfying the GCL, is only linearly convergent when a linear in time interpolation of the

domain deformation is considered. We recover a second-order accuracy when employing a quadratic

interpolation of the domain deformation.

Finally, we remark that the BDF(2) scheme that satisfies the GCL, applied to the conservative for-

mulation, preserves the second-order accuracy even though the domain deformation is only linearly

interpolated in time.
6. Conclusions

This work shows how a careful choice of the time integration formula and mesh movement/velocity

reconstruction allows to maintain a high order time accuracy of a numerical scheme applied to a moving

domain problem.

However it also shows the difficulties, for the discrete problem, in maintaining unconditional stability
in the moving mesh case, irrespectively on the domain velocity. This is a potential problem since in
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fluid-structure interaction the boundary velocity (and consequently the domain velocity reconstructed
through the ALE map) is itself an unknown. In non-linear problems, this difficulties may be even amplified

by non-linear instability issues.

Another finding is that the satisfaction of the GCL is neither a necessary nor a sufficient condition for

stability, apart from special cases like the backward Euler scheme. This in principle could reduce the

interest in GCL-satisfying schemes. However, we may say, also in view of the results shown in [3] that

satisfying the GCL might help in improving the accuracy of the scheme and, in special cases, also to en-

hance stability. Therefore, in particular for fluid structure problems, it might be a good idea to stick to

GCL-satisfying schemes.
Part of the analysis illustrated in this work has been extended to fluid-structure interaction problems,

where the fluid is modeled by the incompressible Navier–Stokes equation [10] and has not been reported

here for the sake of brevity.
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