179 research outputs found

    Optical spectroscopy studies of Cu2ZnSnSe4 thin films

    Get PDF
    Cu2ZnSnSe4 thin films were synthesised by selenisation of magnetron sputtered metal precursors. The band gap determined from the absorption spectra increases from 1.01 eV at 300 K to 1.05 eV at 4.2 K. In lower quality films photoluminescence spectra show a broad, low intensity asymmetric band associated with a recombination of free electrons and holes localised on acceptors in the presence of spatial potential fluctuations. In high quality material the luminescence band becomes intense and narrow resolving two phonon replicas. Its shifts at changing excitation power suggest donor–acceptor pair recombination mechanisms. The proposed model involving two pairs of donors and acceptors is supported by the evolution of the band intensity and spectral position with temperature. Energy levels of the donors and acceptors are estimated using Arrhenius quenching analysis

    Suppression of Epithelial to Mesenchymal Transitioning (EMT) Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue towards Functional Insulin Producing β-Like Cells

    Get PDF
    Because of the lack of tissue available for islet transplantation, new sources of β-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrine-enriched fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine-enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose, in part, through a process of epithelial-to-mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA, and Pax4 generated a population of cells that were enriched in glucagon-secreting α-like cells. Transdifferentiation or reprogramming toward insulin-secreting β-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of Rho-associated kinase (ROCK) and transforming growth factor-β1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation were able to normalize blood glucose levels in streptozotocin diabetic NOD/SCID mice. In conclusion, reprogramming of human exocrine-enriched tissue can be best achieved using fresh material under conditions whereby EMT is inhibited, rather than allowing the culture to expand as a mesenchymal monolayer

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Near-IR dust and line emission from the central region of Mrk1066: Constraints from Gemini NIFS

    Full text link
    We present integral field spectroscopy of the inner 350 pc of the Mrk1066 obtained with Gemini NIFS at a spatial resolution of 35 pc. This high spatial resolution allowed us to observe, for the first time in this galaxy, an unresolved dust concentration with mass 0.014 M_Sun, which may be part of the dusty torus. The emission-line fluxes are elongated in PA=135/315deg in agreement with the [OIII] and radio images and, except for the H lines, are brighter to the north-west than to the south-east. The H emission is stronger to the south-east, where we find a large region of star-formation. The strong correlation between the radio emission and the highest emission-line fluxes indicates that the radio jet plays a fundamental role at these intensity levels. The H2 flux is more uniformly distributed and has an excitation temperature of 2100 K. Its origin appears to be circumnuclear gas heated by X-rays from the AGN. The [FeII] emission also is consistent with X-ray heating, but with additional emission due to excitation by shocks in the radio jet. The coronal-line emission of [CaVIII] and [SIX] are unresolved by our observations indicating a distribution within 18pc from the nucleus. The reddening ranges from E(B-V) ~ 0 to E(B-V) ~ 1.7 with the highest values defining a S-shaped structure along PA ~ 135/315deg. The emission-line ratios are Seyfert-like within the ionization cone indicating that the line emission is powered by the central active nucleus in these locations. Low ionization regions are observed away from the ionization cone, and may be powered by the diffuse radiation field which filters through the ionization cone walls. Two regions at 0.5 arcsec south-east and at 1 arcsec north-west of the nucleus show starburst-like line ratios, attributed to additional emission from star forming regions.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics

    Get PDF
    The heterogeneity of cellular microenvironments in tumors severely limits the efficacy of most cancer therapies. We have designed a microfluidic device that mimics the microenvironment gradients present in tumors that will enable the development of more effective cancer therapies. Tumor cell masses were formed within micron-scale chambers exposed to medium perfusion on one side to create linear nutrient gradients. The optical accessibility of the PDMS and glass device enables quantitative transmitted and fluorescence microscopy of all regions of the cell masses. Time-lapse microscopy was used to measure the growth rate and show that the device can be used for long-term efficacy studies. Fluorescence microscopy was used to demonstrate that the cell mass contained viable, apoptotic, and acidic regions similar to in vivo tumors. The diffusion coefficient of doxorubicin was accurately measured, and the accumulation of therapeutic bacteria was quantified. The device is simple to construct, and it can easily be reproduced to create an array of in vitro tumors. Because microenvironment gradients and penetration play critical roles controlling drug efficacy, we believe that this microfluidic device will be vital for understanding the behavior of common cancer drugs in solid tumors and designing novel intratumorally targeted therapeutics

    Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Get PDF
    Background: The development of effective therapies for acute liver failure (ALF) is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method: 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results: Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein). Control pigs (n=4) survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8+/-5.9 vs 59+/-2.0 mmHg), increased cardiac output (7.26+/-1.86 vs 3.30+/-0.40 l/min) and decreased systemic vascular resistance (8.48+/-2.75 vs 16.2+/-1.76 mPa/s/m3). Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636+/-95 vs 301+/-26.9 mPa/s/m3) observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23+/-0.05 vs 7.45+/-0.02) and prothrombin time (36+/-2 vs 8.9+/-0.3 seconds) compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5+/-210 vs 42+/-8.14) coincided with a marked reduction in serum albumin (11.5+/-1.71 vs 25+/-1 g/dL) in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2+/-36.5 vs 131.6+/-9.33 mumol/l. Liver histology revealed evidence of severe centrilobular necrosis with coagulative necrosis. Marked renal tubular necrosis was also seen. Methaemoglobin levels did not rise >5%. Intracranial hypertension was not seen (ICP monitoring), but there was biochemical evidence of encephalopathy by the reduction of Fischer's ratio from 5.6 +/- 1.1 to 0.45 +/- 0.06. Conclusion: We have developed a reproducible large animal model of acetaminophen-induced liver failure, which allows in-depth investigation of the pathophysiological basis of this condition. Furthermore, this represents an important large animal model for testing artificial liver support systems
    • …
    corecore