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ARTICLE

Intracellular delivery of protein drugs with an
autonomously lysing bacterial system reduces
tumor growth and metastases
Vishnu Raman 1,2,7, Nele Van Dessel1,2,7, Christopher L. Hall1,2, Victoria E. Wetherby2, Samantha A. Whitney1,

Emily L. Kolewe1, Shoshana M. K. Bloom 1, Abhinav Sharma 1, Jeanne A. Hardy 3,4,5, Mathieu Bollen 6,

Aleyde Van Eynde 6 & Neil S. Forbes 1,2,4,5✉

Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell

membranes. Here we report the development of a Salmonella-based intracellular delivery

system to address this challenge. We engineer genetic circuits that (1) activate the regulator

flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released

protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where

they interact with their therapeutic targets. Control of invasion with flhDC increases delivery

over 500 times. The autonomous triggering of lysis after invasion makes the platform self-

limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active

caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases

survival in mice. This success in targeted killing of cancer cells provides critical evidence that

this approach will be applicable to a wide range of protein drugs for the treatment of solid

tumors.
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Delivering protein drugs into the cytoplasm of cancer cells
would expand the number of treatable cancer targets.
More than 60% of the pathways that control cellular

function are intracellular1 and almost all are difficult to access.
Intracellular pathways control most of the hallmarks of cancer2

and have been the focus of a significant fraction of cancer
research. Because of their specificity, protein biologics are excel-
lent candidates for interfering with these pathways. However,
bringing functional proteins across the cell membrane is techni-
cally challenging and current methods to deliver proteins intra-
cellularly have poor efficacy3–5. Effective intracellular delivery,
coupled with specific protein drugs, would provide treatments for
previously incurable cancers.

Once engineered, intracellular bacteria can efficiently deliver
proteins to tumors. Current delivery methods, including nano-
particles, cell-penetrating peptides, and antibody drug conjugates
have limited efficacy because of (1) poor uptake into cells, (2) lack
of specificity to cancer cells, (3) degradation in the circulatory
system, and (4) failure to escape from endosomes3,5–10. When
particles and proteins are taken up by cells, they are trafficked
from early and late endosomes to lysosomes, where they are
degraded11–13. A bacterial system would not be limited by these
mechanisms.

Because of their physiology, Salmonella are uniquely suited to
deliver proteins into cancer cells. Salmonella (1) actively invade
cells14,15, (2) specifically accumulate in tumors16,17, (3) produce
therapeutic molecules in situ18,19, and (4) reshape endosomes
into hospitable environments14,20. In the intestines, Salmonella
evade host defense mechanisms by entering epithelial cells
using proteins encoded by Salmonella pathogenicity island
1 (SPI1)21–23. This cellular invasion has not been measured in
tumors. After invasion, the bacteria restructure endosomes into
Salmonella-containing vacuoles (SCVs) by injecting proteins
encoded by pathogenicity island 2 (SPI2)24–26. SCVs enable
intracellular survival24,27 and protect from intracellular defense
mechanisms28,29. A critical step in the activation of SPI2 genes is
the sensing of the endosomal environment, a mechanism that is
unique to Salmonella.

A bacterial delivery system would have to incorporate three
essential components: (1) synthesis of protein drugs, (2) invasion
into cells, and (3) release of the drugs (Fig. 1a). Protein synthesis
can be controlled with bacterial translation machinery18,19.
Control of invasion is necessary to carry the produced proteins
into cells. Invasion requires both flagella and the type III secretion
system-1 (T3SS-1)30,31. Flagella are essential for cell invasion30,31

because they sense the cell surface and determine the optimal
location for invasion32. T3SS-1 is a needle apparatus that initiates
invasion by injecting effector proteins into cells33–35. These
proteins rearrange the actin cytoskeleton and induce endocytosis
of the bacteria36,37. Production of these two bacterial structures is
controlled by the factors fliZ and hilD, which are, in turn, con-
trolled by the master regulator flhDC38–41. Protein release
requires activation of Salmonella genes specifically inside cells. In
Salmonella, this can be controlled with the promoters of SPI2
genes.

The use of bacteria changes what is traditionally meant by
“delivery.” Unlike traditional delivery vehicles, bacteria manu-
facture protein drugs at the disease site42, delivering exponentially
more molecules than were originally present in the injected
bacteria. This specificity is the result of exponential growth in
tumors, coupled with concurrent clearance from healthy
organs16,17,43–46. Two potential protein drugs that exclusively
affect intracellular proteins are the central domain of nuclear
inhibitor of protein phosphatase 1 (NIPP1-CD) and constitutive
two-chain active caspase-3 (CT Casp-3). NIPP1-CD induces cell
death by competitively disrupting PP1 holoenzymes47. CT Casp-3

is an engineered form of caspase-3 that does not require intra-
cellular activation. Caspase-3 is the dominant executioner caspase
that causes apoptotic cell death48,49.

Here, we describe the development of Intracellular Delivering
(ID) Salmonella. We design this nonpathogenic, therapeutic
strain to deliver proteins into solid tumors. It utilizes genetic
circuits that control protein synthesis, invasion into cells, and
release of protein drugs. This harnessing of the native invasion
and survival machinery of Salmonella enables autonomous
deposition of protein payloads directly into cancer cells. With this
system, released proteins spread throughout the cytoplasm, are
active, and interact with their cellular targets. In mouse models of
breast cancer and hepatocellular carcinoma (HCC), ID Salmo-
nella that produce CT Casp-3 are safe, decrease tumor growth
and reduce established breast metastases. These outcomes show
that this Salmonella-based delivery platform is an effective cancer
therapy that renders the inside of cells more accessible to
protein drugs.

Results
Intracellular lifestyle of Salmonella in tumors. To determine the
extent that Salmonella are intracellular in tumors, bacteria were
administered to mice (Fig. 1b, c). A specialized strain of Salmo-
nella enterica serovar Typhimurium was used that expresses a
fluorescent reporter when intracellular (Supplementary Table 1).
This strain was based on a therapeutic Salmonella strain
(VNP20009; ΔmsbB, ΔpurI, Δxyl) with an additional deletion
(Δasd) to enable plasmid retention in mice (Supplementary
Table 1). In tumor-bearing mice, most Salmonella were intra-
cellular and activated the reporter (black arrows; Fig. 1b, left),
whereas some were exclusively extracellular (white arrows;
Fig. 1b, right). Over all tumors, 70% of Salmonella were intra-
cellular (P < 0.0001, n= 5, Fig. 1c).

The dependence of invasion on the regulator flhDC was
determined by deleting flhD from the genome of the parental
strain (ΔflhD Sal) and creating a strain with controllable re-
expression (flhDC Sal; Supplementary Table 1). The parental
Salmonella strain expresses native levels of flhDC and naturally
invades into cancer cells in culture (arrows, Fig. 1d). Compared to
uninduced control Salmonella (flhDC−), only bacteria with re-
expressed flhDC (flhDC+; arrows) invaded into cells (Fig. 1e).
Salmonella re-expressing flhDC invaded 84% of cells, which was
54 times greater than knockout controls (P < 0.01, Fig. 1f). In
microfluidic tumor masses, which mimic tumor tissue bordering
blood vessels, Salmonella with the intracellular GFP reporter and
re-expressing flhDC invaded cells 53 times more than knockout
controls (P < 0.0001, Fig. 1g). Salmonella re-expressing flhDC
invaded cells throughout the tumor masses (Fig. 1g, bottom).

Design of a protein release system. Engineering Salmonella to
release protein drugs required development of a system to trigger
autonomous lysis after cell invasion (Fig. 2). This goal was
achieved by identifying a SPI2 promoter that is triggered intra-
cellularly and is not active extracellularly. Coupled to a GFP
reporter, the promoters of two SPI2-associated genes, Pssej and
PsifA, both activated after invasion into cancer cells (white
arrows; Fig. 2a, left). Despite both being activated intracellularly,
the extracellular expression (black arrows) of PsseJ was 5.8 times
less than PsifA (P < 0.01, Fig. 2a top), indicating that it is more
sensitive to cell invasion. The activity of PsseJ increased more
than four times after invasion (P < 0.0001, Fig. 2a bottom).

To release a synthesized protein cargo, the bacteria must lyse
after invasion. Triggered expression of Lysin gene E (LysE) from
bacteriophage ΦX1174 caused rapid bacterial death (Fig. 2b).
After induction, Salmonella transformed with PBAD-LysE lysed
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at a rate of 0.39 h−1 (Fig. 2b). Salmonella, with the coupled PsseJ-
LysE construct and that constitutively expresses GFP (white
arrow), lysed after invasion into cancer cells and discharged GFP
(black arrow) into the cytoplasm (Fig. 2c). Most (68%) PsseJ-LysE
Salmonella lysed after invasion, which was significantly greater
than PsseJ-GFP controls that did not lyse (P < 0.0001, Fig. 2d).
After invasion into cancer cells, the engineered bacteria lysed over
the course of 10 h (Fig. 2e). During this period, the cumulative
fraction of cancer cells with intact bacteria decreased exponen-
tially at a rate of 0.33 h−1, which is equivalent to a half-life of
2.1 h (Fig. 2e). The basal expression of Lysin E by the PsseJ-LysE
circuit did not affect bacterial health and intracellular induction
activated lysis at near to its maximum rate (Fig. 2f). Based on
immunoblot of lysed Salmonella, each bacterium contained, on
average, 163,000 molecules of GFP, indicating how much protein
can be delivered (Fig. 2g).

We defined the platform strain that uses the PsseJ-LysE
construct to deliver proteins as intracellular delivering (ID)
Salmonella. In tumor-bearing mice, ID Salmonella invaded cells
and delivered GFP that filled the entire cytoplasm of cells (black
arrows, Fig. 2h). The ID strain natively expresses flhDC and
naturally invades into cells. Using selective permeabilization to
isolate delivered protein and not include unreleased bacterial
protein, it was determined that no GFP was delivered to the livers
or spleens of any mice (Fig. 2i). Comparison to a GFP standard
showed that ID Salmonella delivered 60 ± 12 µg GFP/g tumor,
which is equivalent to 1.5 × 108 bacteria per gram of tumor. To
demonstrate specific targeting of an intracellular protein, cancer
cells were administered ID Salmonella that delivered an anti-actin
nanobody (Fig. 2j). After invasion and lysis, the delivered
nanobody (NB) was bound to cellular actin.

Protein release from ID Salmonella and SCVs. To determine the
mechanisms of protein release in cells a specialized technique was

developed to identify lysed Salmonella and delivered GFP (Fig. 3a,
b). Treatment with a mild detergent selectively permeabilized the
membranes of mammalian cells while leaving bacterial mem-
branes intact. In cells administered ID Salmonella with PsseJ-LysE
(Fig. 3a, top), bacteria lysed (black arrows, faint red), and delivered
GFP (bright green). Intact bacteria (white arrows, bright red, not
green) could be easily distinguished from lysed bacteria. The faint
red structures are membranes of lysed Salmonella. In cells admi-
nistered nonlysing control Salmonella, only intracellular bacteria,
and not the GFP in the bacteria, was visible (Fig. 3a, bottom). The
amount of GFP detected in cultures administered ID Salmonella
was fifty times greater than control cultures (P < 0.0001, Fig. 3b),
showing the selectivity of the method.

When ID Salmonella delivered protein to cells, it was first
released into SCVs and then dispersed into the cytoplasm
(Fig. 3c–h). Immediately after invasion, most Salmonella (white
arrow) resided within LAMP1-stained SCVs (yellow arrow, Fig. 3c).
After several hours, lysis of ID Salmonella released GFP into SCVs
(yellow arrow), where it was retained by the vacuole membrane
and was accessible to staining (black arrow, green dots, Fig. 3d). At
6 h after invasion, most GFP was contained in SCVs (Fig. 3e, left),
but by 24 h, the GFP had escaped the SCVs and was dispersed
throughout the cytoplasm (Fig. 3e, right). This migration of GFP
from SCV to cytoplasm occurred in most cells (P < 0.0001, Fig. 3f).
From the lysis of a group of Salmonella (Fig. 3g and Supplementary
Movie 1), the effective diffusivity of GFP through the cytoplasm
was calculated to be 0.15 µm2/min (Fig. 3h).

As designed, lysis occurred because Salmonella reside within
SCVs (Fig. 3i–k). This dependence on SCVs can be seen in the
small population of Salmonella that escape into the cytoplasm
and are not surrounded by a SCV membrane (white arrow,
Fig. 3i). ID Salmonella in LAMP1-stained SCVs (yellow arrow)
released GFP (black arrow, Fig. 3i). In comparison, ID Salmonella
in the cytoplasm (light blue) did not release GFP (Fig. 3i). Across
multiple cells, more than 95% of lysed Salmonella were inside
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SCVs (P < 0.0001; Fig. 3j). The dependence on SCVs was further
quantified with ID Salmonella with ΔsifA and ΔsseJ deletions,
which are predominantly cytoplasmic50 and vacuolar51, respec-
tively (Fig. 3k). After invasion into cancer cells, ΔsifA ID
Salmonella did not lyse (red, Fig. 3k, upper left), whereas almost
all ΔsseJ ID Salmonella lysed (green, upper right). Without either
deletion, some ID Salmonella did not lyse (red, Fig. 3k, lower left),
although most localized to SCVs, lysed and delivered protein
(green). Both ID and ΔsseJ ID Salmonella lysed significantly more
than ΔsifA ID Salmonella (P < 0.0001, Fig. 3k, lower right).
This dependence indicates that the PsseJ promoter in the PsseJ-
LysE construct only activates in SCVs and not in the cytoplasm.

Control of invasion to deliver proteins into cells within
tumors. A strain of ID Salmonella was constructed to enable
control of flhDC and cell invasion. The ΔflhD Salmonella strain
was transformed with both the PsseJ-LysE and PBAD-flhDC gene
circuits (Supplementary Table 1) and named IDf+ Salmonella
(Fig. 4a). Both the PsseJ-LysE circuit and expression of flhDC were
required for intracellular delivery (Fig. 4b, lower right). IDf+
Salmonella with uninduced PBAD-flhDC neither invaded nor
released protein (Fig. 4b, upper and lower left). Induction of
PBAD-flhDC without PsseJ-LysE lead to invasion but not delivery
(Fig. 4b, upper right). In cells stained for released GFP, only those
administered IDf+ Salmonella with both induced PBAD-flhDC
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and PsseJ-LysE delivered GFP (Fig. 4c). This strain delivered 548
times more GFP than controls (P < 0.0001; Fig. 4d).

In tumors, delivery of protein could be controlled with flhDC
(Fig. 4e, f). After administration of Salmonella that did not
express flhDC to tumor-bearing mice, little GFP was delivered
(Fig. 4e, left). Re-expressing flhDC after initial colonization
increased the number of cells that received GFP (Fig. 4e, right). In
the transition zone of tumors with induced flhDC, 21% of cells
received GFP (P < 0.001), which was five times greater than
controls (P < 0.001, Fig. 4f).

Safety of ID Salmonella. Delivery of proteins with ID Salmonella
is self-limiting and nontoxic (Fig. 5). Mice with orthotopic
mammary tumors were intravenously injected with luciferase-

expressing ID Salmonella (Fig. 5a). The bacterial density in the
tumors initially increased and then decreased, reaching a peak at
72 h (Fig. 5a, b). The density then dropped 95% by day 14
(P < 0.05, Fig. 5b). This decline in density eliminates the bacteria
from the mouse after it has delivered the protein payload. In
healthy, tumor-free mice, ID Salmonella did not accumulate in
the lungs, hearts, kidneys, or brains (Fig. 5c and S2). After
intravenous injection, Salmonella were present in several organs
at 6 h, but were cleared by 7 days (Supplementary Fig. 2). At
14 days, the bacterial density in livers and spleens was 3750 and
14,100 times less than in tumors, respectively (P < 0.05, Fig. 5c).
Comprehensive hematology showed that injection of ID Salmo-
nella did not affect the number of immune cells in the blood
compared to saline controls (Fig. 5d and S1a). Chemistry
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profiling showed that ID Salmonella do not cause liver damage
(Fig. 5e and S1b).

Intracellular delivery of protein drugs. To demonstrate its
therapeutic capabilities, ID Salmonella was engineered to produce
two protein drugs, NIPP1-CD and CT Casp-3. When delivered to
cancer cells in an invasion assay, NIPP1-CD caused more death
than control ID Salmonella without NIPP1-CD (P < 0.01; Fig. 6a).
In microfluidic tumors devices, ID Salmonella that deliver
NIPP1-CD (NIPP1-CD Salmonella) caused cell death (red), which
increased with time (P < 0.05, Fig. 6b). Across whole tissues,
NIPP1-CD caused four times more death than controls (P < 0.05;
Fig. 6c). In mice with 4T1 tumors, ID Salmonella (black arrow,
green) delivered NIPP1-CD (white arrow, red) across the tumor
tissue (Fig. 6d). From images of mice that received NIPP1-CD
Salmonella, ~23 ± 5% of cells contained delivered NIPP1-CD.
Despite effective delivery, NIPP1-CD Salmonella did not affect
tumor growth (Supplementary Fig. 3).

ID Salmonella expressing CT Casp-3 (CT Casp-3 Salmonella)
caused Hepa 1–6 cells to die in culture (Fig. 7a) eight times more
than controls (P < 0.0001, Fig. 7b). The induced death was
dependent on cell invasion and protein delivery. Cells died (white
arrow, red, lower right) 10 h after Salmonella invasion and CT
Casp-3 delivery (green, lower left). Cells that were not invaded
and did not receive CT Casp-3 (yellow arrow) did not die.

Similarly, cells that were invaded by control ID Salmonella and
only delivered GFP (black arrow, upper left) did not die. In
microfluidic tumors devices (Fig. 7c), CT Casp-3 caused twice as
much cell death as bacterial controls (P < 0.01, Fig. 7d). Although
control bacteria kill some cells in these devices (and as seen
previously52), the difference in cell death is due to the delivery of
CT Casp-3.

Delivery of CT Casp-3 was effective against both liver cancer
and triple-negative breast cancer in mice (Fig. 7e–j). After 14 days
of treatment, delivery to BALB/c mice reduced the volume of 4T1
mammary tumors two times more than controls (P < 0.05,
Fig. 7e). Bacterial delivery of CT Casp-3 was also nontoxic.
When injected into tumor-free mice, CT Casp-3 Salmonella was
cleared from most organs in 7 days (Supplementary Fig. 2) and
did not induce any toxicity compared to either saline or empty ID
Salmonella (Supplementary Fig. 4). In BALB/c mice, treatment
with CT Casp-3 blocked the growth of established 4T1 metastases
in the lung (P < 0.05, Fig. 7f, g). In comparison, after treatment
with 10 mg/kg paclitaxel, the standard-of-care, metastatic volume
increased 85 times. No metastases grew in any mice treated with
CT Casp-3 (Supplementary Fig. 5).

Administration of CT Casp-3 Salmonella significantly reduced
the growth of two liver cancer models: BNL-MEA and Hepa 1–6.
Intravenous injection of CT Casp-3 Salmonella reduced the
growth of BNL-MEA tumors by 47 and 57% compared to saline

flhDC

Pr
ot

ei
n

de
liv

er
y

PsseJ-LysE
- + - +
- +- +

P
ss

eJ
-L

ys
E

flhDC +-

+

-

a b c

d

flhDC- flhDC+D
el

iv
er

y 
fra

ct
io

n

***
flhDC+flhDC-

PBAD-flhDC
(invasion)

PsseJ-LysE
(release)

fe

Salmonella

G
FP

105

104

103

102

102

105

104

103

102

105104103 102 105104103

G
FP

Salmonella

P
ss

eJ
-L

ys
E

+

-

flhDC +-

0% 0.05%

0.01% 14%

C
el

ls
 w

ith
de

liv
er

ed
G

FP

In
va

de
d

ce
lls

Released GFP

Released GFP

0.0

0.5

****

0

500

1000

Fig. 4 PsseJ-LysE and flhDC are necessary for delivery to tumors. a To control cell invasion and protein release, IDf+ Salmonella were created by
transforming ΔflhD Salmonella with PsseJ-LysE, PBAD-flhDC, and Plac-GFP. b IDf+ Salmonella were administered to 4T1 cancer cells and PBAD-flhDC was
induced with 20mM arabinose. Controls either lacked PsseJ-LysE, were uninduced, or both. Invasion was detected with anti-Salmonella antibodies and
delivery was detected by the presence of released GFP. c GFP (green, arrows) was only delivered from Salmonella with activated PBAD-flhDC and
transformed with PsseJ-LysE. d Induced IDf+ Salmonella delivered significantly more GFP than all controls (P < 0.0001; n= 6). e IDf+ Salmonella (2 × 108

CFU/mouse) were intravenously injected into BALB/c mice with subcutaneous 4T1 tumors via the tail vein (n= 3). In flhDC+ mice, 100 µg of arabinose
was injected IP at 48 and 72 h. At 96 h, delivered GFP (arrows) was measured in excised tumors with immunohistochemistry. f In the transition zone of the
tumors in e, induction of flhDC increased the fraction of cells with delivered GFP (P= 0.0004; n= 15). Data are shown as means ± SEM. The statistical
comparisons in d were to a single condition performed with ANOVA followed by Dunnett’s method. The statistical comparison in f is a two-tailed, unpaired
Student’s t-test. Asterisks indicate significance (***P < 0.001; ****P < 0.0001). The results in b are from a single experiment and the images in c are
representative of 6 independent biological samples. Scale bars in c and e are 10 µm.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26367-9

6 NATURE COMMUNICATIONS |         (2021) 12:6116 | https://doi.org/10.1038/s41467-021-26367-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and Sorafenib (P < 0.05, Fig. 7h), which is the standard-of-care for
liver cancer. Similarly, treatment with CT Casp-3 Salmonella
reduced the volume of liver Hepa 1–6 tumors in C57L/J mice
(P < 0.001; Fig. 7i) and reduced tumor growth rate 28 times
(P < 0.05; Supplementary Fig. 6). This reduction in growth is
equivalent to an increase in doubling time from 5 to 148 days.
Tumor volume reduced in two mice for over 50 days, and survival
increased significantly compared to bacterial controls (P < 0.05,
Fig. 7j). In mice that survived over 50 days, no toxic effects were
observed from long-term bacterial therapy. Treatment with CT

Casp-3 completely eliminated the tumor from one mouse, which
remained disease free for over 300 days.

Discussion
We have created an autonomous, intracellular Salmonella vehicle
that efficiently delivers active proteins into cells. The ID Salmo-
nella strain is safe, reduces the growth of tumors and metastases,
and increases survival in mice. The developed bacterial strains
utilize three gene circuits that enable precise control of drug
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production, cell invasion, and protein release. These processes
were derived from natural capabilities of Salmonella. The PsseJ-
LysE circuit was designed to trigger protein release independent
of external intervention (Fig. 2). This self-timing system triggers
delivery at the most opportune time for each bacterium and
ensures that proteins are deposited inside cells and not in the
extracellular environment. As a platform, ID Salmonella are
capable of delivering multiple types of proteins including nano-
bodies and cytotoxic proteins (NIPP1-CD and CT Casp-3).

The PsseJ-LysE circuit makes ID Salmonella self-limiting and
safer than nonlysing Salmonella. After injection, the density of ID
Salmonella in tumors reaches a maximum at 72 h (Fig. 5b). After
this peak, the bacteria are cleared. In comparison, our group and

others have shown that nonlysing Salmonella grow exponentially
in tumors16,53. This peak in bacterial density is most likely caused
by the timing of invasion and lysis. During the first 72 h after
injection, ID Salmonella accumulate in tumor tissue, invade into
cancer cells, and form SCVs. After 72 h, the Salmonella in the
SCVs lyse, which releases their contents into host cells and
reduces the bacterial density. This intracellular lysis would limit
unintended exposure to protein therapies and reduce the possi-
bility of unwanted infections.

Salmonella were used to create this delivery platform because
of their unique physiology. Two essential qualities of a delivery
species are invasiveness and ability to sense the intracellular
environment. Numerous bacterial species invade into cells54,55,
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but the promoters of SPI1 and SPI2 are unique to Salmonella. The
SPI2 promoters provide a tool to activate gene expression once
the bacteria are in SCVs, which are explicitly intracellular. At first
it would appear that residence in SCVs would be detrimental to
protein delivery. Indeed, when ID Salmonella first lyse, the pay-
load protein is released into SCVs (Fig. 3d). However, with time,
the protein disperses into the cytoplasm (Fig. 3e–h), where it can
interact with its targets (Fig. 4g). This dispersion is most likely
mediated by the breakdown of the vacuole membrane once the
bacteria are no longer viable and injecting effector proteins to
maintain membrane integrity56,57. In this way, accumulation in
SCVs provides a tool to precisely control the timing of protein
release.

Control of cell invasion is another tool that could increase the
safety and efficacy of protein delivery. We discovered that the
regulator protein complex FlhDC is necessary for cell invasion
(Fig. 1f–i) and we developed a gene circuit (PBAD-flhDC) to
controls its expression (Fig. 4). In culture and tumors, activation of
flhDC increased protein delivery (Fig. 4c, h, i) by forcing all bac-
teria to produce flagella, invade cells and lyse. Modulating flhDC
also has the potential to control the location of delivery. For
example, expression could be induced after bacteria have accu-
mulated in tumors and cleared from most organs. Activating flhDC
would trigger bacteria to invade nearby cancer cells and deliver
their protein payload. This timing would focus delivery to tumors
and prevent release of therapeutic molecules into healthy tissue.

Two essential qualities of ID Salmonella enable the use of
protein drugs that are currently not feasible. Constitutively active
proteins would be too toxic if delivered traditionally and limited
access to intracellular compartments would reduce efficacy.
Active transport across the cell membrane and specific accumu-
lation in tumors solves both of these problems. The example
proteins, NIPP1-CD and CT Casp-3, have exclusively intracel-
lular targets and would be ineffectual without intracellular
delivery. Both of these proteins were modified from their natural
counterparts to be constitutively active and would be toxic if
delivered into all cells systemically. Importantly, CT Casp-3
activates apoptotic pathways that are circumvented by most
cancer cells48. Molecules that have ubiquitous targets would be
effective in most cancer types and would be independent of a
cancer’s mutational profile. Specific accumulation in tumors
ensures the safety of the therapy and prevents adverse events
(Figs. 5 and S4).

The differential response of tumors to delivery of CT Casp-3
and NIPP1-CD suggests that efficacy is dependent on many
factors, and not just cellular cytotoxicity. In culture, delivery of
both molecules killed cancer cells (Figs. 6a–c and 7a–d); however,
NIPP1-CD was not effective in mice (Supplementary Fig. 3). This
suggests that the response to a bacterial delivered protein is
dependent on the cellular environment, other tumor-associate
cells, and the immune response. These dependences may also be
uniquely affected by the presence of tumor-colonized bacteria.

The use of ID Salmonella to deliver CT Casp-3 could address
the need for an effective treatment for unresectable hepatocellular
carcinoma (HCC). No curative treatment currently exists for the
840,000 patients who are diagnosed with HCC annually58,59.
Current therapies have toxic side effects and only modestly
increase survival59–61. Treatment with CT Casp-3 Salmonella
could be safer (Figs. 5, S3, and S4) and more effective (Fig. 7). By
seven days after injection, CT Casp-3 Salmonella were cleared
from most organs (Supplementary Fig. 2b). The presence of
bacteria in organs shortly after injection (6 h, Supplementary
Fig. 2a) has been commonly observed, and these organisms are
predominantly in the blood and not interacting with tissues17.
Although trace amounts of bacteria were present in the spleen
at 7 days, autonomous lysis caused this amount to be about

1000 times lower than previous measurements17,53. In addition,
no delivered proteins were detected in healthy tissue (Fig. 4f)
and no toxicities were observed from the bacteria or the CT Casp-
3 (Supplementary Fig. 4).

Delivery with ID Salmonella will enable targeting of inacces-
sible cancer pathways and will accelerate the generation of cancer
therapies. These therapies can be created by coding the genes for
specific protein drugs into Salmonella expression cassettes.
Nanobodies (Fig. 4g) can be designed that specifically inhibit
pathways necessary for cancer survival and progression. The
efficacy in a metastatic breast cancer model (Fig. 7f, g) suggests
that ID Salmonella finds and halts metastases and could be used
to treat advanced disease. Using bacteria to deliver proteins into
cells will expand the number of accessible pathways, open up
many targets across the soluble proteome for treatment, and
increase the efficacy and safety of cancer treatment.

Methods
Bacterial strains and plasmid construction. Fifteen strains of Salmonella enterica
serovar Typhimurium were used throughout the experiments (Supplementary
Table 1). The parental control strain (Par) is derived from an attenuated strain of
Salmonella (VNP20009) and has four deletions, ΔmsbB, ΔpurI, Δxyl, and Δasd. All
plasmids contained a ColE1 origin and either chloramphenicol or ampicillin
resistance (Supplementary Table 2). Three additional genomic knockouts (ΔflhD,
ΔsifA, and ΔsseJ) were created using a modified lambda red recombination
protocol62 and primers with specific homology regions (Supplementary Table 3).
Plasmids (Supplementary Table 2) were inserted into these base strains to generate
strains that produce GFP (Accession KP294373) after cell invasion, re-express
flhDC (Accession CP001363 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GPL14855]), report activation of PsifA (Accession CP001363 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL14855]), and produce Lysin E
(Accession AF176034) after activation of PsseJ (Accession CP001363 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL14855]). The ID Salmonella
strain was transformed to express a nanobody against β-actin (Chromotek), NIPP1-
CD (Accession NM_174582.2), and CT Casp-3 (Accession AY219866). Details of
gene deletions and plasmid construction are described below and the primers used
are in Supplementary Tables 3 and 4.

All bacterial cultures (both Salmonella and DH5α) were grown in LB (10 g/L
sodium chloride, 10 g/L tryptone and 5 g/L yeast extract). Resistant strains of
bacteria were grown in the presence of carbenicillin (100 µg/ml), chloramphenicol
(33 µg/ml), kanamycin (50 µg/ml), and/or 100 µg/ml of diamino-pimelic acid
(DAP). All assembled DNA constructs were transformed into chemically
competent DH5α E. Coli (New England Biolabs, Ipswich, MA) before
electroporation into Salmonella. Electroporation was performed in 1 mm cuvettes
at 1800 V and 25 µF with a time constant of 5 msec. All cloning reagents, buffer
reagents, and primers were from New England Biolabs, Fisher Scientific (Hampton,
NH), and Invitrogen, (Carlsbad, CA), respectively, unless otherwise noted.

Cell culture and animal models. Five cancer cell lines were used: 4T1 murine
breast carcinoma cells; Hepa 1–6 and BNL-MEA (BNL 1ME A.7 R.1) murine
hepatocellular carcinoma cells; MCF7 human breast carcinoma cells and LS174T
human colorectal carcinoma cells (ATCC, Manassas, VA). The mouse cell lines
were authenticated with CO1 barcoding and the human cell lines were authenti-
cated with short tandem repeat profiling. All cancer cells were grown and main-
tained in Dulbecco’s Minimal Eagle Medium (DMEM) containing 3.7 g/L sodium
bicarbonate and 10% fetal bovine serum. For microscopy studies, cells were
incubated in DMEM with 20 mM HEPES buffering agent and 10% FBS. To gen-
erate tumor spheroids, single-cell suspensions of LS174T cells were transferred to
PMMA-coated cell culture flasks [2 g/L Poly(2-hydroxy ethyl) methylacrylate
(PMMA) in 100% ethanol, dried before use].

Multiple tumor models in mice (Mus musculus) were used. Both male and
female mice, aged 4–7 weeks, were used. Delivery mechanisms and treatment
efficacy were determined using subcutaneous syngeneic tumors formed with (1)
4T1 murine breast cancer and (2) BNL-MEA liver cancer cells implanted in BALB/
c mice, and (3) Hepa 1–6 murine liver cancer cells in C57L/J mice. Clearance was
determined in orthotopic 4T1 tumors implanted in the mammary fat pad of BALB/
c mice. Toxicity and biodistribution were determined in tumor-free BALB/c and
C57L/J mice. The effect on metastases was determined in BALB/c mice
intravenously injected with 4T1 cells. All animal procedures complied with relevant
ethical regulations and protocols were approved by the UMass Institutional Animal
Care and Use Committee (IACUC). Mice were housed under a 12 h light/dark
cycle at controlled room temperature of 72 °F and a relative humidity of 60%.

Gene deletions. Four genetic deletions were created (Δasd, ΔflhD, ΔsifA, and
ΔsseJ) using a modified lambda red recombination protocol62. A parental strain
(Par) was derived from Salmonella strain VNP20009, (ΔmsbB, ΔpurI, Δxyl) by
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deleting asd. Salmonella were transformed with pkd46 (Yale CGSC E. Coli stock
center), centrifuged at 3000 × g and resuspended in ice-cold water. A PCR product
was created to insert an in-frame deletion into the asd gene by PCR amplifying the
FRT-CHLOR-FRT sequence from plasmid pkd3 (Accession AY048742.1) using
primers vr266 and vr268 (Supplementary Table 3), which contain 50 basepair
regions homologous to asd. This linear segment was transformed into Salmonella
by electroporation. After recovery, colonies were screened for knockouts by colony
PCR of the junction sites of the inserted PCR amplified products. Successful
transformants were grown overnight at 43 °C to eliminate pkd46.

A similar process was used to delete flhD, sifA, and sseJ. Deletion of flhD
prevents the formation and function of the hetero-oligomeric FlhDC complex63.
Linear DNA segments were designed to insert in-frame deletions into the genes by
amplification of the FRT-KAN-FRT sequence from plasmid pkd4 (Accession
AY048743.1). Three sets of primers (vr121 and vr309 for flhD; vr432, and vr433 for
sseJ; and vr434 and vr435 for sifA) added 50-basepair flanking regions that were
homologous to the three genes (Supplementary Table 3). After electroporation and
recovery, colonies were screened for knockouts by colony PCR. Successful
transformants were plated on kanamycin plates (50 µg/ml) and grown overnight at
43 °C to remove pkd46.

Plasmid construction. Fifteen strains of Salmonella (Supplementary Table 1) were
created by transforming twelve plasmids (Supplementary Table 2) into the parental
strain (Par) and the gene knockout strains described above (i.e., ΔflhD, ΔsifA, and
ΔsseJ). All of the plasmids contained a ColE1 origin and either chloramphenicol or
ampicillin resistance (Supplementary Table 2). The intracellular-reporting strain of
Salmonella was generated by transforming the parental strain (Par) with a plasmid
containing PsseJ-GFP (plasmid P1; Supplementary Table 2). The construction of this
plasmid was initiated by first creating a promoterless-GFP plasmid from pLacGFP and
pQS-GFP64. The pQS-GFP plasmid (Accession KP294373) contains chloramphenicol
resistance, the ColE1 origin of replication, and the asd gene (Accession CP001363
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL14855]). Expression of ASD
is necessary in Δasd strains and creates a balanced lethal system that maintains gene
expression in vivo. The Plac-GFP gene circuit (Accession KP294375) was amplified
from plasmid pLacGFP with primers nd1 and nd2 (Supplementary Table 4). The PCR
product and the plasmid were digested with Aat2 and Pci1 and ligated with T4 DNA
ligase (NEB, catalog # M0202S). The PsseJ promoter (Accession CP001363 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL14855]) was amplified from the
genome of SL1344 Salmonella using primers nd3 and nd4 (Supplementary Table 4).
This PCR product and the backbone plasmid were ligated after digestion with XbaI
and Pci1.

A strain that re-expresses flhDC (flhDC Sal, Supplementary Table 1) was created
by transforming ΔflhD Salmonella with plasmid P2 (Supplementary Table 2).
Plasmid P2 was formed from temporary plasmid P3. Plasmid P3 was formed by
amplifying flhDC (Accession CP001363 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GPL14855]) from Salmonella genomic DNA using primers vr46 and
vr47 (Supplementary Table 4), and ligating it into plasmid PBAD-his-mycA
(Invitrogen; catalog # V430-01). The PCR product was digested with NcoI, XhoI
and DpnI (NEB, catalog #s R0193S, R0146S and R0176L). The PBAD-his-myc
plasmid (Accession X81838) was digested with NcoI and XhoI and treated with calf
intestinal phosphatase (NEB, catalog # M0290) for 3 h. The PCR product was
ligated into the plasmid backbone with T4 DNA ligase (NEB, catalog # M0202S).

The Plac-GFP-myc circuit was inserted into P3 by Gibson Assembly. [1] The
insert (Plac-GFP-myc) was amplified from plasmid pLacGFP64 using primers vr394
and vr395 (Supplementary Table 4), which added homology regions to the
backbone and added the myc tag. [2] The backbone plasmid (P3) was amplified
using primers vr385 and vr386, which added homology to the insert. [3] Both PCR
products were digested with DpnI for 3 h, [4] and ligated by Gibson Assembly
(HiFi master mix, NEB, catalog # E2621L). The gene for aspartate semialdehyde
dehydrogenase (asd) gene was inserted by Gibson Assembly by amplifying asd
from genomic Salmonella DNA using primers vr424 and vr425, and amplifying the
plasmid backbone with primers vr426 and vr427.

A strain that re-expresses flhDC and produces GFP after invasion (flhDC
reporting, Supplementary Table 1) was created by transforming ΔflhD Salmonella
with plasmid P4 (Supplementary Table 2). The PsseJ-GFP-myc genetic circuit was
amplified from P1 using primers vr269 and vr270, and the backbone of plasmid P3
was amplified using primers vr271 and vr272. The two PCR products were ligated
by Gibson Assembly.

To generate the PsifA intracellular promoter-reporter strain, the PsifA
promoter (Accession CP001363 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GPL14855]) was cloned from Salmonella genomic DNA using
primers nd5 and nd6 and inserted into P1 using XbaI and Pci1 creating plasmid
P5. The PsifA reporter strain was created by transforming plasmid P5 into
background Salmonella by electroporation. The generation of the PsseJ reporter
strain is described above. To investigate lysis in Salmonella, lysis gene E (LysE)
was put under control of PBAD. LysE was cloned using primers nd7 and nd8 and
inserted into pBAD/Myc-His A (Invitrogen) using NcoI and KpnI to form
plasmid P6.

Intracellular delivering (ID) Salmonella were created by cloning the Lysin E
gene (Accession AF176034) behind the PsseJ promoter. LysE was amplified using
primers nd9 and nd10 and cloned into P1 using XbaI and Aat2. The Plac-GFP

circuit was added to this plasmid by cloning it from plasmid pLacGFP using
primers nd11 and nd12 and inserting using SacI to create plasmid P7. This plasmid
constitutively expresses myc-tagged GFP to identify bacteria in both live-cell and
fixed-cell assays.

Two strains of ID Salmonella with deletions of the sseJ and sifA genes were
created by transforming the knockout strains described above (ΔsifA and ΔsseJ)
with plasmid P7. Similar to ID Salmonella, these two strains contain the PsseJ-LysE
construct and constitutively express myc-tagged GFP. Note the distinction between
the effector gene sseJ, which is necessary for vacuolar escape, and its promotor
PsseJ, which activates in SCVs.

ID Salmonella that re-expresses flhDC (IDf+ Sal) was created by transforming
ΔflhD with plasmids P8. Plasmid P8 was created by amplifying the PsseJ-LysE gene
circuit from P7 using primers vr398 and vr399, and ligating it into plasmid P2
using Gibson Assembly. The P2 backbone plasmid was amplified using primers
vr396 and vr397.

A strain of ID Salmonella that constitutively expresses luciferase (ID Sal-luc;
Supplementary Table 1) was created by cloning Plac-luc from pMA3160 (Addgene)
using primers ch1 and ch2. The P7 plasmid backbone was amplified with primers
ch3 and ch4 and the pieces were ligated by Gibson Assembly to form plasmid
P9 (Supplementary Table 2).

To create ID Salmonella that express anti-b-actin nanobody (NB), PBAD-
inducible nanobody was cloned in place of flhDC in plasmid P8. The actin
nanobody (Chromotek, catalog # acr) was amplified using primers vr466 and vr467.
The delivery plasmid backbone was amplified using primers vr448 and vr449. The
two PCR products were ligated by Gibson Assembly to create plasmid P10.

To create ID Salmonella that express the central domain of NIPP1 (NIPP1-CD,
Accession NM_174582), NIPP1-CD-myc was cloned into plasmid pLacGFP.
NIPP1-CD-myc and the backbone plasmid were amplified using primers nd13-
nd16 ligated by Gibson Assembly. The pLac-NIPP1-CD circuit was cloned using
primers nd11 and nd17 (Supplementary Table 4) and inserted into P7 using SacI to
create plasmid P11.

To create ID Salmonella that intracellularly deliver CT caspase-3 (CT Casp-3,
Accession AY219866), parental Salmonella were transformed with plasmid P12.
This plasmid was created by PCR amplifying template DNA encoding for CT
caspase-3 using primers, vr450 and vr451 from the constitutively two-chain (CT)
caspase-3 encoding plasmid pC3D175CT. The pC3D175CT plasmid (Hardy Lab
DNA archive Box 7, line 62) was constructed similarly to the caspase-6 CT
expression construct65 using Quikchange mutagenesis on a construct encoding
full-length human caspase-3 in a pET23 expression vector (Addgene). Plasmid
pC3D175CT encodes human caspase-3 residues 1–175, followed by a TAA stop
codon, a ribosome binding sequence and the coding sequence for a start
methionine and an inserted serine followed by the coding sequence for residues
176–286 with a six histidine tag appended. The backbone of plasmid P8 was PCR
amplified using primers vr448 and vr449 and the PCR products were ligated as
described above.

Invasion assays and immunocytochemistry. Mouse 4T1 or human MCF7 cells
were grown on coverslips for fixed-cell imaging or on well plates for live-cell
imaging. For fixed imaging, Salmonella were added to 4T1 cultures at a multiplicity
of infection (MOI) of 10. For live-cell imaging, Salmonella added to MCF7 cultures
at an MOI of 25. The bacteria were allowed to infect cells for two hours. The
cultures were then washed five times and treated with 50 µg/ml gentamicin in
culture medium to remove extracellular bacteria. Live cells on well plates were
directly imaged microscopically.

To obtain detailed images, cells on coverslips were fixed with 10% formalin after
6 or 24 h of incubation. Fixed coverslips were blocked with staining buffer (PBS
with 0.1% Tween 20, 1 mM EDTA, and 2% bovine serum albumin) for 30 min. The
Tween 20 in this buffer selectively permeabilizes mammalian cell membranes,
while leaving bacterial membranes intact. After permeabilization, coverslips were
stained to identify Salmonella, released GFP, vacuolar membranes and/or
intracellular f-actin with (1) rabbit anti-Salmonella polyclonal antibody (Abcam,
catalog # ab35156; 1:200 dilution) or FITC-conjugated rabbit anti-Salmonella
polyclonal antibody (Abcam, catalog # ab69253; 1:100 dilution) (2) rat anti-myc
monoclonal antibody (Chromotek, catalog # 9e1-100; 1:200 dilution), (3) rabbit
anti-LAMP1 polyclonal antibody (Abcam, catalog # ab24170; 1:200 dilution), and
(4) Alexaflor-568-conjugated phalloidin (ThermoFisher, catalog # A12380),
respectively.

Immunohistochemistry. Excised tumor sections were fixed in 10% formalin,
embedded in paraffin and cut into 5 µm sections. Antigen retrieval was performed
by incubating deparaffinized sections in 20 mM sodium citrate (pH 7.6) buffer for
20 min at 95 °C. Samples were rehydrated with DI water and Tris buffered saline
with 0.1% Tween 20 (TBS-T). Prior to staining, tissue sections were blocked with
Dako blocking buffer (Dako, catalog # X0909). Tissue sections were stained to
identify Salmonella and GFP with (1) FITC-conjugated rabbit anti-Salmonella
polyclonal antibody (Abcam, catalog # ab69253; 1:100 dilution), and (2) either rat
anti-myc monoclonal antibody (Chromotek, catalog # 9e1-100; 1:100 dilution) or
rat anti-GFP monoclonal antibody (Chromotek, catalog # 3h9-100; 1:100 dilution).
Sections were incubated with Alexaflor-568 goat anti-rat secondary antibodies
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(ThermoFisher, catalog # A11077) and counterstained with DAPI-containing
mountant (ThermoFisher, catalog # P36962).

Microscopy. Samples were imaged on a Zeiss Axio Observer Z.1 microscope. Fixed
cells on coverslips were imaged with a ×100 oil immersion objective (1.4 NA).
Tumor sections were imaged with ×10 and ×20 objectives (0.3 and 0.4 NA,
respectively). Time-lapse fluorescence microscopy of live cells in well plates and
tumor-chip devices were housed in a humidified, 37 °C environment and imaged
with ×5, ×10, ×63, or ×100 objectives (0.2, 0.3, 1.4, and 1.4 NA, respectively).
Fluorescence images were acquired with either 480/525 or 525/590 excitation/
emission filters. All images were background subtracted and contrast was uni-
formly enhanced. Some image analysis was automated using computational code
(MATLAB, Mathworks).

Tumor masses in microfluidic devices. Microfluidic tumor-on-a-chip devices
were developed in our laboratory to quantify bacterial invasion52,66. Soft litho-
graphy was used to create a multilayer device with 12 tumor chambers. Master
chips were constructed by spin coating a layer of SU-8 2050 onto a silicon wafer at
1250 RPM for 1 min for a thickness of 150 µm. The silicon wafer with an overlaid
mask printed with the microfluidic designs was exposed to UV light (22 J/cm2) for
22 sec. After baking, wafers were developed in PGMEA developing solution for
10 min. PDMS (Sylgard 184) at ratios of 9:1 and 15:1 were used for the channel and
valve layers, respectively. After aligning, the layers were baked for 1 h at 95 °C in
order to covalently bind. The PDMS device was adhered to a glass slide by placing
both in a plasma cleaner (Harrick) for 2.5 min. Prior to use, devices were sterilized
with 10% bleach and 70% ethanol, and equilibrated with media (DMEM with
20 mM HEPES). Valve actuation was used to position tumor spheroids in the
tumor chambers.

Intracellular Salmonella in cells and tumors. To observe invasion into cancer
cells, Salmonella were administered to mouse 4T1 breast cancer cells on coverslips
using an invasion assay. The cells and bacteria were stained with phalloidin and
anti-Salmonella antibodies and imaged with ×100 oil immersion microscopy. To
measure invasion into cells in tumors, BALB/c mice with subcutaneous 4T1 tumors
were administered 2 × 106 CFU of PsseJ-GFP Salmonella (Supplementary Table 1)
by intratumoral injection. Ninety-six hours after injection, tumors were excised and
stained to identify Salmonella and the GFP reporter produced by intracellular
Salmonella. The fraction of intracellular Salmonella was determined by identifying
Salmonella (n= 1258) in four images and determining the number that colocalize
with GFP.

Effect of flhDC on invasion into cells and tumor masses. To determine the effect
of expressing flhDC on invasion, 4T1 cells were grown on glass coverslips and
administered flhDC+ and flhDC− Salmonella at an MOI of 10. Prior to admin-
istration, flhDC+ Salmonella were grown in LB with 20 mM arabinose to induce
flhDC expression. For flhDC+ bacteria, 20 mM arabinose was also added to the
mammalian co-cultures to maintain gene expression. Control (flhDC−) bacteria
were grown without arabinose. Eighteen hours after invasion, the cells were stained
to identify intracellular Salmonella. Invasion was quantified in six images from
three coverslips per condition by randomly identifying 20 cancer cells from the
DAPI channel and determining if there was Salmonella staining within 10 µm of
the nucleus.

To quantify invasion into tumor masses, flhDC-inducible, intracellular-
reporting Salmonella (Supplementary Table 1) were administered to tumor-on-a-
chip devices. Bacteria-containing medium (DMEM with 20 mM HEPES) was
perfused through the devices for one hour at 3 µm/min for a total delivery of
2 × 106 CFU per device. Two conditions (flhDC+ and flhDC−; n= 6 chambers
each) were compared. Similar to monolayer culture, flhDC+ Salmonella were
grown in LB with 20 mM arabinose prior to administration, and 20 mM arabinose
was added to the co-culture medium to maintain gene expression. Bacterial
administration was followed by bacteria-free media (with 20 mM HEPES) for 48 h.
Devices were imaged at 30 min intervals. Invasion was quantified at 31 h by
measuring GFP expression by invaded bacteria.

Design of ID Salmonella. To determine the intracellular activation of the PsifA
and PsseJ promoters, Salmonella with GFP-reporting constructs (Supplementary
Table 1) were administered to MCF7 cancer cells at an MOI of 25. Extracellular
promoter activity was determined as the average fluorescence intensity of bacteria
from three wells, and normalized to the average intensity of PsseJ bacteria. The
increase in promoter activity following invasion was determined by comparing the
average intensity of bacteria in cells to extracellular bacteria. To determine bacterial
death caused by lysin E, Salmonella strain PBAD-LysE (Supplementary Table 1)
was grown in LB to an OD of 0.25 and induced with 10 mM arabinose. Growth and
death rates were determined by fitting exponential functions to bacterial density.

To visualize and quantify triggered intracellular lysis and GFP delivery, ID
Salmonella were administered to MCF7 cancer cells at an MOI of 25. Cultures
were washed five times and treated with 50 µg/ml gentamicin to remove
extracellular bacteria. Transmitted and fluorescent images were acquired at ×20
every 30 min for 10 h. Two hundred cancer cells were randomly selected and

scored based on bacterial invasion and lysis. Times of lysis for individual
bacteria (within the cancer cells) were determined as the moment of
disappearance from the fluorescent time-lapse images of intracellular GFP-
expressing bacteria. The lysis fraction was the number of cancer cells with lysed
bacteria over the total number of observed cells. The rate of intracellular lysis
was determined by fitting an exponential function to the cumulative fraction of
cells with lysed bacteria. To generate images of bacterial lysis and GFP delivery,
ID Salmonella were administered to 4T1 cancer cells at an MOI of 10.
Coverslips were fixed and stained for Salmonella and released GFP. To quantify
bacterial protein content, ID Salmonella were suspended at four densities: 106,
107, 108, and 109 bacteria and compared to a GFP standard at three
concentrations: 1, 10, and 100 ng per 40 µl Laemmli buffer. GFP was identified
in immunoblots with rat anti-GFP monoclonal antibody (Chromotek, catalog #
3h9-100; 1:1000 dilution).

Delivery to tumors. To identify and quantify GFP delivery to tumor cells, BALB/c
mice with subcutaneous 4T1 tumors were administered 2 × 106 CFU of ID Sal-
monella by intratumoral injection. Ninety-six hours after bacterial injection,
tumors, liver and spleens were excised. Tumor sections were stained with anti-GFP
antibody (Abcam, catalog # ab6556; 1:100 dilution). To compare the amount of
delivered protein in the organs of these mice, tumors, livers and spleens were snap-
frozen in liquid nitrogen and treated with a buffer containing 50 mM Tris-HCl,
0.3% Triton-X 100, 0.1% NP-40 and 0.3 M NaCl to lyse mammalian cells but not
bacterial membranes. Immunoblotting was performed with anti-GPF (Abcam,
catalog # ab6673; 1:1000 dilution) and anti-β-actin (GeneTex, catalog # GTX26276,
clone AC-15; 1:1000 dilution). To quantify the amount of protein delivered to
tumors, the tumor lysates were run on a similar immunoblot and compared to a
GFP standard at 0.43, 1.3, and 3.9 pmols. The amount of GFP per tumor was
determined as the lysate concentration multiplied by the lysate volume, normalized
by the tumor mass.

To measure the delivery of anti-actin nanobodies, NB and ID Salmonella were
administered to 4T1 cancer cells at an MOI of 10. The extent of binding to β-actin
was determined by immunoprecipitation. Twenty-four hours after invasion, cells
were harvested and centrifuged at 600 × g for 10 min. The cell pellet was lysed,
homogenized, and incubated overnight with 50 µl of anti-FLAG purification resin
(Biolegend, catalog # 651502). Beads were boiled for 5 min and loaded onto SDS-
PAGE gels. β-actin was identified with mouse anti-actin monoclonal antibody (Cell
Signaling Technology, catalog # 8H10D10; 1:1000 dilution).

Protein release from Salmonella and SCVs. In order to quantify GFP release
from vacuoles, ID Salmonella were administered to 4T1 cancer cells on coverslips
at an MOI of 10. At 6 and 24 h, one set of coverslips were fixed, permeabilized and
stained with using anti-Salmonella, anti-myc, and anti-LAMP1 antibodies.
Acquired images were analyzed to quantify (1) the location of released GFP and (2)
the location of Salmonella lysis. The fraction of vacuolar GFP was determined as
the area of released GFP that was colocalized with LAMP1, normalized by the total
area of released GFP. The location of bacteria lysis was determined by identifying
all bacteria in seven 86.7 × 66.0 µm regions based on anti-Salmonella staining.
Lysed bacteria were identified as those that colocalized with released GFP. Each
lysed bacterium was classified as either vacuolar or cytoplasmic by its colocalization
with LAMP1. To visualize the localization of released GFP in cells, a second set of
fixed coverslips were stained with anti-Salmonella and anti-myc antibodies, and
phalloidin, to visualize cell structures and boundaries.

To measure the rate of GFP dispersion through cells after lysis, MCF7 cancer
cells were grown on 96-well plates with coverslip glass bottoms (ThermoFisher,
catalog #160376). ID Salmonella were administered at an MOI of 25. After
removing extracellular bacteria with gentamycin, transmitted and fluorescence
images were acquired at ×63 every minute for 14 h. Intensities were measured on
lines passing through bacterial centers starting when bacteria were intact until
diffusion was complete. Cytosolic diffusivity was determined by fitting the
spatiotemporal intensity profiles to the radial diffusion equation.

To determine the dependence of protein release on residence in SCVs, 4T1
cancer cells were grown on coverslips and infected with ΔsifA, ΔsseJ, or ID
Salmonella at an MOI of 10 (n= 3 for each condition). All three of these strains
contained the PsseJ-LysE and Plac-GFP-myc gene circuits (Supplementary Table 1).
At 6 h after invasion, the cancer cells were fixed, permeabilized and stained for
Salmonella and released GFP. The lysis fraction was calculated in MATLAB as
number of lysis pixels (GFP positive) divided by the total (GFP or Salmonella
positive).

Control of invasion. To determine the dependence of protein delivery on invasion
and intracellular lysis, flhDC Sal (contains PBAD-flhDC, but not PsseJ-LysE) and
IDf+ Sal (contains PBAD-flhDC and PsseJ-LysE; Supplementary Table 1) were
administered to 4T1 cancer cells in well plates and on coverslips infected at an MOI
of 10. Prior to invasion, flhDC expression was induced in the flhDC+ cultures with
20 mM arabinose. Expression was maintained in the subsequent mammalian co-
cultures with addition of 20 mM arabinose. Control (flhDC-) bacteria were grown
without arabinose. For flow cytometry, cells were processed into a single-cell
suspension with 0.05% trypsin (ThermoFisher, catalog # 25300-054) and fixed with
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5% formaldehyde in PBS and 1 mM EDTA. After permeabilization with 0.1%
Tween, cells were stained with FITC-conjugated anti-Salmonella antibody (Abcam,
catalog # ab69253; 1:100 dilution), and anti-myc monoclonal antibody (Chromotek,
catalog # 9e1-100; 1:100 dilution), followed by Dylight 755 secondary antibody
(Thermofisher, # SA5-10031; 1:100 dilution) staining against the primary anti-myc
antibody. Fluorescence minus one (FMO) of each sample were used as gating
controls for each fluorophore. Samples were analyzed on a custom-built flow
cytometer (dual LSRFortessa 5-laser, BD; with BD FACS Diva software). All
fluorophores were compensated with compensation beads (BD, catalog # 552845)
and did not carry more than 2% bleed over into any other channel. Cells were gated
to exclude debris, isolate single cells, and quantify the percentage with intracellular
Salmonella and delivered protein (Supplementary Fig. 7). For microscopy, cover-
slips were fixed, permeabilized and stained for released GFP. Protein (GFP)
delivery was quantified in MATLAB as the number of pixels stained for GFP-myc
normalized by total in the PsseJ-LysE−, flhDC− condition.

To determine the effect of flhDC on protein delivery, BALB/c mice with
subcutaneous 4T1 tumors were injected with 2 × 106 CFU of IDf+ Salmonella
(flhDC+) and ΔflhD Salmonella (flhDC−) via the tail vein. Prior to injection,
Salmonella were grown without arabinose to prevent flhDC expression until after
tumor colonization. At 48 and 72 h after bacterial injection, 100 µg of arabinose in
400 µl of PBS was injected intraperitoneally (IP) into flhDC+ mice to induce
expression. Ninety-six hours after injection, tumors were excised, sectioned and
stained with primary anti-GFP antibody (Chromotek, catalog # 3h9-100; 1:100
dilution) and followed by anti-rat secondary (Life Technologies, catalog # A11077).
Delivery was quantified at 20 random points in the transition zone of each acquired
tumor image. A point was scored as positive if a cell within 20 µm contained
delivered GFP.

Temporal colonization, biodistribution, and toxicity of ID Salmonella. To
determine the bacterial density in tumors over time, 2 × 107 CFU ID Salmonella
that express firefly luciferase (ID Sal-luc, Supplementary Table 1) were intrave-
nously injected into BALB/c mice with orthotopic 4T1 tumors in the mammary fat
pad. At 24, 48, 72, 168, 336 h after bacterial injection, mice were injected IP with
100 µl of 30 mg/ml D-luciferin in sterile PBS and imaged with an IVIS animal
imager (PerkinElmer, SpectrumCT). Bacterial density was determined as the
photon flux. After acquiring the final image at 14 days, the bacterial density was
measured by excising tumors and culturing the homogenized tissue on agar plates.

To measure the biodistribution, tumor-free BALB/c mice were injected with
1 × 107 ID Salmonella via the tail vein. Control mice were injected with sterile
saline. After 14 days, six organs were excised and weighed: spleen, liver, lung,
kidney, heart, and brain. Organs were minced and cultured on agar plates. A
second experiment was performed to determine the biodistribution at earlier times.
Tumor-free C57L/J mice were intravenously injected with either saline (control),
1 × 107 ID Salmonella, or 1 × 107 CT Casp-3 Salmonella. At two timepoints (6 h
and 7 days), tissues were excised and weighed from two separate groups of mice.
Bacterial densities were determined by mincing organs and culturing on agar
plates.

To measure the toxicity of ID Salmonella, four tumor-free BALB/c mice were
injected with 1 × 107 ID Salmonella via the tail vein. After 14 days, whole blood was
isolated by percutaneous cardiac puncture. A second experiment was performed to
determine the toxicity of bacterial delivery of CT Casp-3. Tumor-free C57L/J mice
were intravenously injected with saline (control), 1 × 107 ID Salmonella, or 1 × 107

CT Casp-3 Salmonella. Sera were collected 7 days after injection. Chemistry
profiling and comprehensive hematology was conducted on the serum and whole
blood samples by IDEXX Laboratories (Grafton, MA).

Cytotoxicity of CT Casp-3 and NIPP1-CD. To measure the efficacy of delivering
protein drugs, NIPP1-CD and CT Casp-3 Salmonella were administered to Hepa
1–6 liver cancer cells at an MOI of 10. Cell death was detected with 500 ng/ml
ethidium homodimer and calculated as the fraction of dead Salmonella-invaded
cells over the total number of Salmonella-invaded cells. To measure cell death in
tumor masses, media containing 2 × 107 CFU/ml NIPP1-CD or CT Casp-3 Sal-
monella and 500 ng/ml ethidium homodimer was perfused through tumor-on-a-
chip devices for 1 h at 3 µm/min. Bacterial administration was followed by bacteria-
free media. Transmitted and fluorescence images were acquired every 30 min for
24 h. Death was quantified as the percentage of the tumor mass stained with
ethidium homodimer at 24 h.

To measure efficacy and the extent of delivering NIPP1-CD, 1 × 107 CFU/
mouse of NIPP1-CD Salmonella or saline (controls) were administered to BALB/c
mice with subcutaneous 4T1 tumors by intravenous injection. Tumors were
measured twice a week and volumes were calculated with the formula (length)
*(width2)/2. After 31 days, tumors were excised and stained for Salmonella
(Abcam, catalog # ab69253; 1:100 dilution) and NIPP1-CD with antibodies to the
c-terminal myc tag (Chromotek, catalog # 9e1-100; 1:100 dilution), followed by a
secondary antibody to the myc specific antibody (Life Technologies, catalog #
A11077; 1:100 dilution). In the acquired images, DAPI staining was used to identify
regions with viable nucleated cells. The average delivery of NIPP1 was determined
as the fraction of the viable cell area that positively stained for delivered NIPP1-
CD.

To measure the efficacy of delivering CT Casp-3, bacteria were administered to
BALB/c mice with subcutaneous 4T1 tumors, BALB/c mice with subcutaneous
BNL-MEA tumors, and C57L/J mice with subcutaneous Hepa 1–6 tumors. For the
4T1 and Hepa 1–6 tumor models, groups of mice (n= 6 for 4T1; n= 3 for Hepa
1–6) received intratumoral injections of saline, 4 × 107 CFU ID Salmonella, or
4 × 107 CFU CT Casp-3 Salmonella. The ID Salmonella (bacterial) control
established the baseline effect of bacteria colonization and intracellular lysis. Every
5 days, tumors were injected with bacteria or saline. For the BNL-MEA model,
once tumors reached 100 mm3, mice were intravenously injected every five days
with 1 × 107 CFU/mouse of CT Casp-3 Salmonella (n= 5), 10 mg/kg Sorafenib
(n= 4), or saline (n= 5). Sorafenib (10 mg/kg) is the standard-of-care for liver
cancer. Tumors were measured twice a week and volumes were calculated with the
formula (length)*(width2)/2. Mice were sacrificed when tumors reached
1000 mm3.

To measure the efficacy of CT Casp-3 in secondary tumor sites, lung metastases
were formed by injection of 5.0 × 104 luciferase-expressing 4T1 cells into the tail
veins of female BALB/c mice. Relative metastasis volume was determined by
injecting the mice IP with 100 µl of 30 mg/ml D-luciferin in sterile PBS and imaged
with an IVIS animal imager (PerkinElmer, SpectrumCT). When lung colonization
was detected, mice were injected intravenously every 5 days with 1 × 107 CFU CT
Casp-3 ID Salmonella or injected IP with 10 mg/kg paclitaxel. Tumor burden was
monitored weekly with BLI until study endpoint.

Statistical methods. Statistical analysis was performed in Excel (Microsoft Office
Professional Plus 2016) and GraphPad Prism 9.2.0. Comparisons of two popula-
tions were made with two-tailed, unpaired Student’s t-tests. Comparisons of
multiple conditions were made using ANOVA with a Bonferroni correction.
Comparison of multiple conditions to a single control were performed with
ANOVA followed by Dunnett’s method. In some large datasets, outliers were
removed using the ROUT method, with a Q (maximum false discovery rate) of 1%.
To compare survival, log-rank tests were used with Bonferroni correction. All
measurements were taken from distinct samples. Values are reported as means ±
standard errors (SEMs). Statistical significance was confirmed when P < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated in this study are available within the Article, Supplementary
Information or Source Data file. Source data generated in this study have been also
deposited in the figshare database with digital identifier https://doi.org/10.6084/
m9.figshare.16439073 67. Source data are provided with this paper.
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