8,347 research outputs found

    Role of a plausible nuisance contributor in the declining obesity-mortality risks over time.

    Get PDF
    CONTEXT: Recent analyses of epidemiological data including the National Health and Nutrition Examination Survey (NHANES) have suggested that the harmful effects of obesity may have decreased over calendar time. The shifting BMI distribution over time coupled with the application of fixed broad BMI categories in these analyses could be a plausible nuisance contributor to this observed change in the obesity-associated mortality over calendar time. OBJECTIVE: To evaluate the extent to which observed temporal changes in the obesity-mortality association may be due to a shifting population distribution for body mass index (BMI), coupled with analyses based on static, broad BMI categories. DESIGN, SETTING, AND PARTICIPANTS: Simulations were conducted using data from NHANES I and III linked with mortality data. Data from NHANES I were used to fit a true model treating BMI as a continuous variable. Coefficients estimated from this model were used to simulate mortality for participants in NHANES III. Hence, the population-level association between BMI and mortality in NHANES III was fixed to be identical to the association estimated in NHANES I. Hazard ratios (HRs) for obesity categories based on BMI for NHANES III with simulated mortality data were compared to the corresponding estimated HRs from NHANES I. MAIN OUTCOME MEASURES: Change in hazard ratios for simulated data in NHANES III compared to observed estimates from NHANES I. RESULTS: On average, hazard ratios for NHANES III based on simulated mortality data were 29.3% lower than the estimates from NHANES I using observed mortality follow-up. This reduction accounted for roughly three-fourths of the apparent decrease in the obesity-mortality association observed in a previous analysis of these data. CONCLUSIONS: Some of the apparent diminution of the association between obesity and mortality may be an artifact of treating BMI as a categorical variable

    Signatures of electron-boson coupling in half-metallic ferromagnet Mn5_5Ge3_3: study of electron self-energy Σ(ω)\Sigma(\omega) obtained from infrared spectroscopy

    Full text link
    We report results of our infrared and optical spectroscopy study of a half-metallic ferromagnet Mn5_5Ge3_3. This compound is currently being investigated as a potential injector of spin polarized currents into germanium. Infrared measurements have been performed over a broad frequency (50 - 50000 cm−1^{-1}) and temperature (10 - 300 K) range. From the complex optical conductivity σ(ω)\sigma(\omega) we extract the electron self-energy Σ(ω)\Sigma(\omega). The calculation of Σ(ω)\Sigma(\omega) is based on novel numerical algorithms for solution of systems of non-linear equations. The obtained self-energy provides a new insight into electron correlations in Mn5_5Ge3_3. In particular, it reveals that charge carriers may be coupled to bosonic modes, possibly of magnetic origin

    Just how hot are the ω\omega Centauri extreme horizontal branch pulsators?

    Full text link
    Past studies based on optical spectroscopy suggest that the five ω\omega Cen pulsators form a rather homogeneous group of hydrogen-rich subdwarf O stars with effective temperatures of around 50 000 K. This places the stars below the red edge of the theoretical instability strip in the log gg −- Teff diagram, where no pulsation modes are predicted to be excited. Our goal is to determine whether this temperature discrepancy is real, or whether the stars' effective temperatures were simply underestimated. We present a spectral analysis of two rapidly pulsating extreme horizontal branch (EHB) stars found in ω\omega Cen. We obtained Hubble Space Telescope/COS UV spectra of two ω\omega Cen pulsators, V1 and V5, and used the ionisation equilibrium of UV metallic lines to better constrain their effective temperatures. As a by-product we also obtained FUV lightcurves of the two pulsators. Using the relative strength of the N IV and N V lines as a temperature indicator yields Teff values close to 60 000 K, significantly hotter than the temperatures previously derived. From the FUV light curves we were able to confirm the main pulsation periods known from optical data. With the UV spectra indicating higher effective temperatures than previously assumed, the sdO stars would now be found within the predicted instability strip. Such higher temperatures also provide consistent spectroscopic masses for both the cool and hot EHB stars of our previously studied sample.Comment: 9 pages, accepted for publication in Astronomy and Astrophysic

    Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production

    Get PDF
    The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program

    Diluted Random Fields in Mixed Cyanide Crystals

    Full text link
    A percolation argument and a dilute compressible random field Ising model are used to present a simple model for mixed cyanide crystals. The model reproduces quantitatively several features of the phase diagrams altough some crude approximations are made. In particular critical thresholds x_c at which ferroelastic first order transitions disappear, are calculated. Moreover, transitions are found to remain first order down to x_c for all mixtures except for bromine, for which the transition becomes continuous. All the results are in full agreement with experimental data.Comment: 8 pages, late

    Multiwavelength Observations of the Hot DB Star PG 0112+104

    Full text link
    We present a comprehensive multiwavelength analysis of the hot DB white dwarf PG 0112+104. Our analysis relies on newly-acquired FUSE observations, on medium-resolution FOS and GHRS data, on archival high-resolution GHRS observations, on optical spectrophotometry both in the blue and around Halpha, as well as on time-resolved photometry. From the optical data, we derive a self-consistent effective temperature of 31,300+-500 K, a surface gravity of log g = 7.8 +- 0.1 (M=0.52 Msun), and a hydrogen abundance of log N(H)/N(He) < -4.0. The FUSE spectra reveal the presence of CII and CIII lines that complement the previous detection of CII transitions with the GHRS. The improved carbon abundance in this hot object is log N(C)/N(He) = -6.15 +- 0.23. No photospheric features associated with other heavy elements are detected. We reconsider the role of PG 0112+104 in the definition of the blue edge of the V777 Her instability strip in light of our high-speed photometry, and contrast our results with those of previous observations carried out at the McDonald Observatory.Comment: 10 pages in emulateapj, 9 figures, accepted for publication in Ap

    On a Conjecture of Rapoport and Zink

    Full text link
    In their book Rapoport and Zink constructed rigid analytic period spaces FwaF^{wa} for Fontaine's filtered isocrystals, and period morphisms from PEL moduli spaces of pp-divisible groups to some of these period spaces. They conjectured the existence of an \'etale bijective morphism Fa→FwaF^a \to F^{wa} of rigid analytic spaces and of a universal local system of QpQ_p-vector spaces on FaF^a. For Hodge-Tate weights n−1n-1 and nn we construct in this article an intrinsic Berkovich open subspace F0F^0 of FwaF^{wa} and the universal local system on F0F^0. We conjecture that the rigid-analytic space associated with F0F^0 is the maximal possible FaF^a, and that F0F^0 is connected. We give evidence for these conjectures and we show that for those period spaces possessing PEL period morphisms, F0F^0 equals the image of the period morphism. Then our local system is the rational Tate module of the universal pp-divisible group and enjoys additional functoriality properties. We show that only in exceptional cases F0F^0 equals all of FwaF^{wa} and when the Shimura group is GLnGL_n we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will appear in Inventiones Mathematica

    High-speed Photometric Observations of ZZ Ceti White Dwarf Candidates

    Full text link
    We present high-speed photometric observations of ZZ Ceti white dwarf candidates drawn from the spectroscopic survey of bright DA stars from the Villanova White Dwarf Catalog by Gianninas et al., and from the recent spectroscopic survey of white dwarfs within 40 parsecs of the Sun by Limoges et al. We report the discovery of six new ZZ Ceti pulsators from these surveys, and several photometrically constant DA white dwarfs, which we then use to refine the location of the ZZ Ceti instability strip.Comment: 4 pages, 1 table, 2 figures, to appear in "19th European White Dwarf Workshop" in the ASP Conference Serie

    Hybrid expansions for local structural relaxations

    Full text link
    A model is constructed in which pair potentials are combined with the cluster expansion method in order to better describe the energetics of structurally relaxed substitutional alloys. The effect of structural relaxations away from the ideal crystal positions, and the effect of ordering is described by interatomic-distance dependent pair potentials, while more subtle configurational aspects associated with correlations of three- and more sites are described purely within the cluster expansion formalism. Implementation of such a hybrid expansion in the context of the cluster variation method or Monte Carlo method gives improved ability to model phase stability in alloys from first-principles.Comment: 8 pages, 1 figur

    Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers

    Full text link
    The influence of magnetic anisotropy on nanosecond magnetization reversal in coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic samples the reversal of the soft FeNi layer is determined by domain wall pinning that leads to the formation of small and irregular domains. In samples with uniaxial magnetic anisotropy, the domains are larger and the influence of local interlayer coupling dominates the domain structure and the reversal of the FeNi layer
    • …
    corecore