386 research outputs found

    On protection of Freedom's solar dynamic radiator from the orbital debris environment. Part 1: Preliminary analyses and testing

    Get PDF
    A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime

    On protection of Freedom's solar dynamic radiator from the orbital debris environment. Part 2: Further testing and analyses

    Get PDF
    Presented here are results of a test program undertaken to further define the response of the solar dynamic radiator to hypervelocity impact (HVI). Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of velocity. Target parameters are also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define the solar dynamic radiator reliability with respect to HVI more rigorously than previous studies. Test data, reliability, and survivability results are presented

    Stratospheric Ozone Variations Caused by Solar Proton Events between 1963 and 2005

    Get PDF
    Solar proton fluxes have been measured by satellites for over forty years (1963-2005). Several satellites, including the NASA Interplanetary Monitoring Platforms (1963-1993) and the NOAA Geostationary Operational Environmental Satellites (1994-2005), have been used to compile this long-term dataset. Some solar eruptions lead to solar proton events (SPEs) at the Earth, which typically last a few days. High energy solar protons associated with SPEs precipitate on the Earth's atmosphere and cause increases in odd hydrogen (HOx) and odd nitrogen (NOy) in the polar cap regions (greater than 60 degrees geomagnetic). The enhanced HOx leads to short-lived ozone depletion (~days) due to the short lifetime of HOx constituents. The enhanced NOy leads to long-lived ozone changes because of the long lifetime of the NOy family in the stratosphere and lower mesosphere. Very large SPEs occurred in 1972, 1989, 2000, 2001, and 2003 and were predicted to cause maximum total ozone depletions of 1-3%, which lasted for several months to years past the events. These long-term ozone changes caused by SPES are discussed

    Mesospheric Dynamical Changes Induced by the Solar Proton Events in October-November 2003

    Get PDF
    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth that impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization, as well as dissociation processes, and ultimately produced odd hydrogen (HOx) and odd nitrogen (NOy). Significant short-lived ozone decreases (10-70%) followed these enhancements of HOx and NOy and led to a cooling of most of the lower mesosphere. This cooling caused an atmospheric circulation change that led to adiabatic heating of the upper mesosphere. Temperature changes up to plus or minus 2.6 K were computed as well as wind (zonal, meridional, vertical) perturbations up to 20-25% of the background winds as a result of 22 the solar protons. The solar proton-induced mesospheric temperature and wind perturbations diminished over a period of 4-6 weeks after the SPEs. The Joule heating in the mesosphere, induced by the solar protons, was computed to be relatively insignificant for these solar storms with most of the temperature and circulation perturbations caused by ozone depletion in the sunlit hemisphere

    Early Action on HFCs Mitigates Future Atmospheric Change

    Get PDF
    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90 of the climate change impacts of HFCs can be avoided if emissions stop by 2030

    CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Get PDF
    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendation

    V474 Car: A Rare Halo RS CVn Binary in Retrograde Galactic Orbit

    Get PDF
    We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude that places it above the main sequence. However, its extreme radial velocity (264 km s1^{-1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4-m finds that V474 Car is both a spectroscopic binary with orbital period similar to the photometric rotation period, and metal poor ([Fe/H] \simeq -0.99). The star's Galactic orbit is extremely eccentric (e \simeq 0.93) with perigalacticon of only \sim0.3 kpc of the Galactic center - and its eccentricity and smallness of its perigalacticon are only surpassed by \sim0.05%, of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high velocity, metal poor, tidally-locked chromospherically active binary (CAB), i.e.\ a halo RS CVn binary, and one of only a few such specimens known.Comment: Accepted to Astronomical Journa

    NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    Get PDF
    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively

    UV Absorption Cross Sections of Nitrous Oxide (N2O) and Carbon Tetrachloride (CCl4) Between 210 and 350 K and the Atmospheric Implications

    Get PDF
    Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented

    NRQCD Analysis of Bottomonium Production at the Tevatron

    Get PDF
    Recent data from the CDF collaboration on the production of spin-triplet bottomonium states at the Tevatron p \bar p collider are analyzed within the NRQCD factorization formalism. The color-singlet matrix elements are determined from electromagnetic decays and from potential models. The color-octet matrix elements are determined by fitting the CDF data on the cross sections for Upsilon(1S), Upsilon(2S), and Upsilon(3S) at large p_T and the fractions of Upsilon(1S) coming from chi_b(1P) and chi_b(2P). We use the resulting matrix elements to predict the cross sections at the Tevatron for the spin-singlet states eta_b(nS) and h_b(nP). We argue that eta_b(1S) should be observable in Run II through the decay eta_b -> J/psi + J/psi.Comment: 20 pages, 3 figure
    corecore