384 research outputs found

    Sedimentological and stratigraphic framework of the several hundred thousand years old lacustrine record from Lake Van, Turkey

    Get PDF
    Within the frame of the International Continental scientific Drilling Program (ICDP) project PALEOVAN, a long and continuous sediment record from Lake Van, a closed lake situated in a climatically sensitive semiarid and tectonically active region in Eastern Anatolia, has been drilled in summer 2010. At two sites, Ahlat Ridge and Northern Basin, sedimentary records of 220 and 140 m were recovered, respectively. With basal ages possibly around 500'000 years, these records span several glacial-interglacial cycles and reach back until the lake’s initial transgression in the Middle Pleistocene. First results from ongoing analysis of core-catcher samples and newly opened cores document the sedimentological and geochemical succession. Two composite profiles of the drill sites were defined. Core catcher-based geochemical data such as proxies of lake’s productivity and catchment alterations show large variations and reflect a rich paleoenvironmental history. Most of the 220 m thick succession consists of carbonate mud, mostly sub-mm-thick laminated and interbedded by either homogenous mud or pyroclastic cm-thick layers. The lowermost sediments from the Ahlat Ridge site represent the initial lake transition as the drilling could not penetrate further and the seismic data indicates coincidence with the ‘acoustic’ basement. Such an early transgressive state of the lake’s history is also supported by the lithology consisting of a gravel unit as an indicator of a beach-like environment, which is overlain by sand deposits containing fresh-water gastropods (Bithynia). Above 200 mblf, the laminated mud clearly indicates that the lake was already deep enough to form anoxic bottom water as the laminations were preserved. This unique paleoclimate archive indicates that great changes of the depositional conditions occurred that hint to a fascinating evolution of the environment and has ideal prerequisites for the investigation of the Quaternary climate evolution in the Near East

    Impact of an 0.2 km 3 Rock Avalanche on Lake Eibsee (Bavarian Alps, Germany) – Part II: Catchment Response to Consecutive Debris Avalanche and Debris Flow

    Get PDF
    The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study anal- yses the lake impact and the consequences, and the catchment response to the landslide. A quasi‐3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly flu- idized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and sub- aquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geo- morphology

    Drilling into a deep buried valley (ICDP DOVE): a 252 m long sediment succession from a glacial overdeepening in northwestern Switzerland

    Get PDF
    The modern Alpine landscape and its foreland were strongly impacted by the numerous glacier ad- vance and retreat cycles during the Middle-to-Late Pleistocene. Due to the overall erosive character of each glaciation cycle, however, direct traces of older glaciations tend to be poorly preserved within the formerly glaciated domains of the pan-Alpine area. Nevertheless, sediments of older glaciations may occur hidden un- der the modern surface in buried glacially overdeepened troughs that reach below the normal level of fluvial erosion (fluvial base level). These sedimentary archives, partly dating back to the Middle Pleistocene period, are of great scientific value for reconstructing the timing and extent of extensive Alpine glaciation, paleocli- mate, and paleoenvironmental changes in the past and help to better understand ongoing and future changes in the pan-Alpine area. Therefore, the International Continental Scientific Drilling Program (ICDP) project DOVE (Drilling Overdeepened Alpine Valleys) targets several of these glacial overdeepened sedimentary basins to re- cover their sedimentary infills. In the frame of the DOVE project, a 252 m long drill core of unconsolidated Quaternary sediments was recovered in northern Switzerland from an over 300 m deep glacially overdeepened structure (“Basadingen Trough”) formed by the former Rhine Glacier lobe system. The recovered sedimentary succession was divided into three stratigraphic units on the basis of lithological and petrophysical characteristics. The lowest unit, deposited below the fluvial base level, consists of an over 200 m thick succession of glacial to (glacio)lacustrine sediments and contains remains of possibly two glaciation cycles. Overlying this lowermost succession, an ∌ 37 m thick fluvial-to-glaciofluvial gravel deposit occurs, which correlates to a locally outcrop- ping Middle Pleistocene formation (“Buechberg Gravel Complex”). The sediment succession is capped by an ∌ 11 m thick diamictic succession interpreted as the subglacial till from the later extensive glaciation, including the regional glaciation during the Last Glacial Maximum. The recovered sediment succession thus supports the proposed multi-phase origin of trough formation and its infill

    Origin and age of submarine ferromanganese hardgrounds from the Marion Plateau, offshore northeast Australia

    Get PDF
    Be and Nd isotope compositions and metal concentrations (Mn, Fe, Co, Ni, and Cu) of surface and subsurface ferromanganese hardground crusts from Ocean Drilling Program Leg 194 Marion Plateau Sites 1194 and 1196 provide new insights into the crusts' genesis, growth rates, and ages. Metal compositions indicate that the hardgrounds, which have grown on erosional surfaces in water depths of <400 m because of strong bottom currents, are not pure hydrogenetic precipitates. Nevertheless, the ratios between cosmogenic 10Be and stable 9Be in hardgrounds from the present-day seafloor at Site 1196 between 1 x 10–7 and 1.5 x 10–7 are within the range of values expected for Pacific seawater, which shows that the hardgrounds recorded the isotope composition of ambient seawater. This is also confirmed by their Nd isotope composition (Nd between –3 and 0). The 10Be/9Be ratios in the up to 30-mm-thick and partly laminated hardgrounds do not show a decrease with depth, which suggests high growth rates on the present-day seafloor. The subsurface crust at Site 1194 (117 m below the seafloor) grew during a sedimentation hiatus, when bottom currents in the late Miocene prevented sediment accumulation on the carbonate platform during a sea level lowstand. The age of 8.65 ± 0.50 Ma for this crust obtained from 10Be-based dating agrees well with the combined seismostratigraphic and biostratigraphic evidence, which suggests an age for the hiatus between 7.7 and 11.8 Ma

    A 500,000-year-long sediment archive drilled in eastern Anatolia

    Get PDF
    Sedimentary archives host a wealth of information that can be used to reconstruct paleoclimate as well as the tectonic and volcanic histories of specific regions. Long and continuous archives from the oceans have been collected in thousands of locations by scientific ocean drilling programs over the past 40 years. In contrast, suitable continental archives are rare because terrestrial environments are generally nondepositional and/or subject to erosion. Lake sediments provide ideal drilling targets to overcome this limitation if suitable lakes at key locations have existed continuously for a long time

    Rinikerfeld Palaeolake (Northern Switzerland) – a sedimentary archive of landscape and climate change during the penultimate glacial cycle

    Get PDF
    While timing and ice extent of the last glacial maximum are generally well known, the courses of earlier glaciations have remained poorly constrained, with one of the main reasons being the scarcity of sedimentary archives. This study introduces a new palaeolake record from a Mid‐Pleistocene glaciofluvial channel system in the Lower Aare Valley (Northern Switzerland). The record of Rinikerfeld comprises a >40 m long succession of Quaternary deposits that are targeted by multi‐method sedimentological analysis. Sedimentary facies together with geochemical and geotechnical parameters, pollen content, as well as luminescence ages allow the reconstruction of the establishment, evolution and infilling of the early Marine Isotope Stage 6‐aged Rinikerfeld Palaeolake. A drastic change in lake sediment composition and structure indicates cessation of the initial glacially derived input, which is explained by landscape modification and drainage rerouting during the Penultimate (Beringen) Glaciation. Geochemical and palynological data further reveal cold, initially periglacial but slightly ameliorating, climate conditions, while the lake was progressively filled up by local runoff, before being buried by periglacial colluvial diamicts, and potentially overridden by ice. It is therefore concluded that the onset of the Beringen Glaciation was an environmentally as well as geomorphically dynamic time period in the Northern Alpine Foreland

    GefahrenabschÀtzung von durch Unterwasserhangrutschungen ausgelösten Tsunamis in Seen

    Get PDF
    Aufsatz veröffentlicht in: "Wasserbau-Symposium 2021: Wasserbau in Zeiten von Energiewende, GewÀsserschutz und Klimawandel, Zurich, Switzerland, September 15-17, 2021, Band 1" veröffentlicht unter: https://doi.org/10.3929/ethz-b-00049975
    • 

    corecore