352 research outputs found

    Effective String Theory Revisited

    Full text link
    We revisit the effective field theory of long relativistic strings such as confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by a calculation in static gauge. This interaction implies that a non-critical string which initially oscillates in one direction gets excited in orthogonal directions as well. In static gauge no additional term in the effective action is needed to obtain this effect. It results from a one-loop calculation using the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at all stages in dimensional regularization. We also explain that independent of the number of dimensions non-covariant counterterms have to be added to the action in the commonly used zeta-function regularization.Comment: 21 pages, 4 figures, v2: typo corrected, references added, published versio

    Flux compactification on smooth, compact three-dimensional toric varieties

    Full text link
    Three-dimensional smooth, compact toric varieties (SCTV), when viewed as real six-dimensional manifolds, can admit G-structures rendering them suitable for internal manifolds in supersymmetric flux compactifications. We develop techniques which allow us to systematically construct G-structures on SCTV and read off their torsion classes. We illustrate our methods with explicit examples, one of which consists of an infinite class of toric CP^1 bundles. We give a self-contained review of the relevant concepts from toric geometry, in particular the subject of the classification of SCTV in dimensions less or equal to 3. Our results open up the possibility for a systematic construction and study of supersymmetric flux vacua based on SCTV.Comment: 27 pages, 10 figures; v2: references, minor typos & improvement

    Factorization Breaking in Dijet Photoproduction with a Leading Neutron

    Get PDF
    The production of dijets with a leading neutron in ep-interactions at HERA is calculated in leading order and next-to-leading order of perturbative QCD using a pion-exchange model. Differential cross sections for deep-inelastic scattering (DIS) and photoproduction are presented as a function of several kinematic variables. By comparing the theoretical predictions for DIS dijets to recent H1 data, the pion flux factor together with the parton distribution functions of the pion is determined. The dijet cross sections in photoproduction show factorization breaking if compared to the H1 photoproduction data. The suppression factor is S = 0.48 (0.64) for resolved (global) suppression.Comment: 16 pages, 5 figure

    LHC as πp\pi p and ππ\pi\pi Collider

    Full text link
    We propose an experiment at the LHC with leading neutron production.The latter can be used to extract from it the total π+p\pi^+ p cross-sections. With two leading neutrons we can get access to the total π+π+\pi^+\pi^+ cross-sections. In this note we give some estimates and discuss related problems and prospects.Comment: 22 pages, 18 figures, 8 tables, to be publishe

    Universal de Sitter solutions at tree-level

    Full text link
    Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference

    Galaxy Bias and non-Linear Structure Formation in General Relativity

    Full text link
    Length scales probed by large scale structure surveys are becoming closer to the horizon scale. Further, it has been recently understood that non-Gaussianity in the initial conditions could show up in a scale dependence of the bias of galaxies at the largest distances. It is therefore important to include General Relativistic effects. Here we provide a General Relativistic generalization of the bias, valid both for Gaussian and non-Gaussian initial conditions. The collapse of objects happens on very small scales, while long-wavelength modes are always in the quasi linear regime. Around every collapsing region, it is therefore possible to find a reference frame that is valid for all times and where the space time is almost flat: the Fermi frame. Here the Newtonian approximation is applicable and the equations of motion are the ones of the N-body codes. The effects of long-wavelength modes are encoded in the mapping from the cosmological frame to the local frame. For the linear bias, the effect of the long-wavelength modes on the dynamics is encoded in the local curvature of the Universe, which allows us to define a General Relativistic generalization of the bias in the standard Newtonian setting. We show that the bias due to this effect goes to zero as the squared ratio of the physical wavenumber with the Hubble scale for modes longer than the horizon, as modes longer than the horizon have no dynamical effects. However, the bias due to non-Gaussianities does not need to vanish for modes longer than the Hubble scale, and for non-Gaussianities of the local kind it goes to a constant. As a further application, we show that it is not necessary to perform large N-body simulations to extract information on long-wavelength modes: N-body simulations can be done on small scales and long-wavelength modes are encoded simply by adding curvature to the simulation and rescaling the coordinates.Comment: 48 pages, 4 figures; v2: added references, JCAP published versio

    Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories

    Get PDF
    The interplay rich between algebraic geometry and string and gauge theories has recently been immensely aided by advances in computational algebra. However, these symbolic (Gr\"{o}bner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these short-comings. Its so-called 'embarrassing parallelizability' allows us to solve many problems and extract physical information which elude the symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.Comment: 36 page

    Doping the holographic Mott insulator

    Full text link
    Mott insulators form because of strong electron repulsions, being at the heart of strongly correlated electron physics. Conventionally these are understood as classical "traffic jams" of electrons described by a short-ranged entangled product ground state. Exploiting the holographic duality, which maps the physics of densely entangled matter onto gravitational black hole physics, we show how Mott-insulators can be constructed departing from entangled non-Fermi liquid metallic states, such as the strange metals found in cuprate superconductors. These "entangled Mott insulators" have traits in common with the "classical" Mott insulators, such as the formation of Mott gap in the optical conductivity, super-exchange-like interactions, and form "stripes" when doped. They also exhibit new properties: the ordering wave vectors are detached from the number of electrons in the unit cell, and the DC resistivity diverges algebraically instead of exponentially as function of temperature. These results may shed light on the mysterious ordering phenomena observed in underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic

    CMB-S4 Science Book, First Edition

    Full text link
    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales

    The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background

    Full text link
    Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habitat. The age-old questions have been transformed into two pressing issues primed for attack in the coming decade: How did the Universe begin? and What physical laws govern the Universe at the highest energies? The clearest window onto these questions is the pattern of polarization in the Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial gravity waves. A detection of the special pattern produced by gravity waves would be not only an unprecedented discovery, but also a direct probe of physics at the earliest observable instants of our Universe. Experiments which map CMB polarization over the coming decade will lead us on our first steps towards answering these age-old questions.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 212 author available at http://cmbpol.uchicago.ed
    corecore