9 research outputs found

    Increased Risk of Recurrence After Hormone Replacement Therapy in Breast Cancer Survivors

    Get PDF
    Background Hormone replacement therapy (HT) is known to increase the risk of breast cancer in healthy women, but its effect on breast cancer risk in breast cancer survivors is less clear. The randomized HABITS study, which compared HT for menopausal symptoms with best management without hormones among women with previously treated breast cancer, was stopped early due to suspicions of an increased risk of new breast cancer events following HT. We present results after extended follow-up. Methods HABITS was a randomized, non-placebo-controlled noninferiority trial that aimed to be at a power of 80% to detect a 36% increase in the hazard ratio (HR) for a new breast cancer event following HT. Cox models were used to estimate relative risks of a breast cancer event, the maximum likelihood method was used to calculate 95% confidence intervals (CIs), and χ2 tests were used to assess statistical significance, with all P values based on two-sided tests. The absolute risk of a new breast cancer event was estimated with the cumulative incidence function. Most patients who received HT were prescribed continuous combined or sequential estradiol hemihydrate and norethisterone. Results Of the 447 women randomly assigned, 442 could be followed for a median of 4 years. Thirty-nine of the 221 women in the HT arm and 17 of the 221 women in the control arm experienced a new breast cancer event (HR = 2.4, 95% CI = 1.3 to 4.2). Cumulative incidences at 5 years were 22.2% in the HT arm and 8.0% in the control arm. By the end of follow-up, six women in the HT arm had died of breast cancer and six were alive with distant metastases. In the control arm, five women had died of breast cancer and four had metastatic breast cancer (P = .51, log-rank test). Conclusion After extended follow-up, there was a clinically and statistically significant increased risk of a new breast cancer event in survivors who took H

    Peripheral blood cells inform on the presence of breast cancer: A population‐based case–control study

    No full text
    Tumor–host interactions extend beyond the local microenvironment and cancer development largely depends on the ability of malignant cells to hijack and exploit the normal physiological processes of the host. Here, we established that many genes within peripheral blood cells show differential expression when an untreated breast cancer (BC) is present, and harnessed this fact to construct a 50-gene signature that distinguish BC patients from population-based controls. Our results were derived from a series of large datasets within our unique population-based Norwegian Women and Cancer cohort that allowed us to investigate the influence of medications and tumor characteristics on our blood-based test, and were further tested in two external datasets. Our 50-gene signature contained cytostatic signals including the specific suppression of the immune response and medications influencing transcription involved in those processes were identified as confounders. Through analysis of the biological processes differentially expressed in blood, we were able to provide a rationale as to why the systemic response of the host may be a reliable marker of BC, characterized by the underexpression of both immune-specific pathways and “universal” cell programs driven by MYC (i.e., metabolism, growth and cell cycle). In conclusion, gene expression of peripheral blood cells is markedly perturbed by the specific presence of carcinoma in the breast and these changes simultaneously engage a number of systemic cytostatic signals emerging connections with immune escape of BC. WHAT'S NEW? Blood cells are dynamic warehouses of information. In the case of cancer, studies have indicated that blood cells house genetic signatures related to solid tumors. In the present study, genes in peripheral blood cells were found to be differentially expressed in women with untreated breast cancer, enabling the development of a 50-gene signature capable of identifying women with the disease. The gene signature included signals specific to immunosuppression. The association of breast cancer with the underexpression of immune-specific pathways and with MYC-driven “universal” cell programs may explain the systemic response of the host

    Interactions between the tumor and the blood systemic response of breast cancer patients

    No full text
    <div><p>Although systemic immunity is critical to the process of tumor rejection, cancer research has largely focused on immune cells in the tumor microenvironment. To understand molecular changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Interactions Across Tissues) to systematically explore and link molecular processes expressed in each tissue. MIxT confirmed that processes active in the patient SR are especially relevant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological processes are associated and their patterns of expression) varies highly with tumor subtype. For example, aspects of the immune SR are underexpressed proportionally to the level of expression of defined molecular processes specific to basal tumors. The catalog of subtype-specific interactions across tissues from BC patients provides promising new ways to tackle or monitor the disease by exploiting the patient SR.</p></div

    Gene co-expression networks, modules and associations with clinicopathological attributes of BC patients.

    No full text
    <p>(A) Network visualization using the edge-weighted spring embedded layout from Cytoscape (v3.2.1) including the top gene connections (topological overlap > 0.1) in tumor. Each node (gene) is color-coded by the module to which it belongs, Keywords representing top pathway enrichments (biological processes) are indicated for each module. (B) Network visualization including the top gene connections in the patient SR. The legend follows Fig 2A. (C) Associations between tumor modules and clinicopathological attributes of patients. Associations were estimated using Pearson correlation (Student’s p) or ANOVA. Shading is proportional to -log<sub>10</sub>(fdr) of the associations (fdr <i>≤</i> 0.15). HER2S: HER2 score; LUMS: luminal score; MKS: Mitotic kinase gene expression score; hrt: hormone replacement therapy (D) Associations between SR modules and clinicopathological attributes of patients. The legend follows Fig 2C.</p

    Subtype-Specific Matched Interactions across Tissue (ssMIxT).

    No full text
    <p>(A) Schematic of ssMIxT analysis (B) Significant associations between modules in SR and tumor from BC patients by subtype (MIxT statistic, p-value < 0.005). SR and tumor modules with top pathway enrichment keywords are presented in rows and columns, respectively. Subtype(s) in which the significant associations are found are indicated in the table. Blue and red borders correspond to negative and positive correlations between ranksums, respectively. Findings discussed in the text are highlighted in orange.</p

    Association between the brown tumor and green SR module for two distinct subtypes.

    No full text
    <p>(A) Scatter plot of ranksums of the brown tumor module and the green SR module in ER-/HER2- patients. The top corner depicts the background distributions of the correlations coefficients between ranksums of every modules pairs across tissues in ER-/HER2- patients. (B) Scatter plot of ranksums of the brown tumor module and the green SR module in ER+/lumB patients. Legend follows Fig 5A (C) Expression heatmap of genes in the brown tumor module in ER-/HER2- patients. Patients are linearly ordered based on the ranksum of gene expression in the brown tumor module. Yellow vertical lines delimit the ROI<sub>95</sub> in tumor that contains 95% of the randomly generated samples. Genes that are positively and negatively correlated with the ranksum are represented in the right sidebar colored in red and blue, respectively. Top pathway enrichment keywords and representative genes are indicated on the left and right of the heatmap, respectively). (D) Expression heatmap of genes in the brown tumor module in ER+/lumB patients. Legend follows Fig 5C. (E) Expression heatmap of genes in the green SR module in ER-/HER2- patients. Legend follows Fig 5C. Top pathway enrichment keywords and representative genes are indicated on the left and right of the heatmap, respectively. (F) Expression heatmap of genes in the green SR module in ER+/lumB patients. Legend follows Fig 5E. (G) Clinical characteristics of ER-/HER2- patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005680#pcbi.1005680.g001" target="_blank">Fig 1D</a>. (H) Clinical characteristics of ER+/lumB patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005680#pcbi.1005680.g001" target="_blank">Fig 1D</a>. Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module and clinicopathological attributes of patients. Associations were estimated using ANOVA (fdr < ***0.01). (I) Distribution of ranksums for ER-/HER2- patients and controls induced by the expression of genes in the green SR module. Patients are grouped according to the ROI<sub>95</sub> brown tumor module category as defined in Fig 5C. aov: analysis of variance (J) Distribution of ranksums for ER+/lumB patients and controls induced by the expression of genes in the green SR module. Patients are grouped according to the ROI<sub>95</sub> brown tumor module category as defined in Fig 5D.</p

    Modules size and overlap in their gene composition across tissues.

    No full text
    <p>(A) Histograms depicting number of genes composing modules in each tissue. Edges between modules indicate significant overlaps in gene composition (Fisher exact test, fdr < 0.01). (B) Expression heatmaps of the 47 genes included in both darkturquoise modules in tumor (upper) and SR (lower). Patients in both heatmaps are linearly ordered based on their ranksum of gene expression in tumors. Yellow vertical lines delimit the region of Independence (ROI<sub>95</sub>) in tumor that contains 95% of randomly generated samples. Twenty genes out of the 47 common genes are involved in the type 1 IFN signaling pathway (IFN alpha signaling pathway is depicted on the right).</p

    Individual characteristics and SR markers of BC subtypes.

    No full text
    <p>(A) Collection of biospecimen from BC patients and controls. (B) Individual characteristics of BC patients and controls. (C) Parallel plot displaying the repartition of BC patients across RNA-based subtyping schemes. (D) Sparse hierarchical clustering of BC patients based on genes expressed in tumor (upper) and the patient SR (lower). Clinicopathological and subtypes attributes are presented below the dendrogram. (E) Significant gene markers of subtypes in SR (false discovery rate, fdr <i>≤</i> 0.2). Blue and red shade correspond to under- and over- expression of the marker in a given subtype vs the others, respectively. Shading is proportional to the level of significance of the gene marker.</p
    corecore