27 research outputs found

    Synthèse et caractérisation de nanostructures organiques covalentes stables

    Get PDF
    La découverte des nanotubes de carbone représente une avancée significative dans le domaine de la chimie des matériaux. Ce type de matériau et ses dérivés ont trouvés une utilité importante, particulièrement en électronique moléculaire. Même si la synthèse et la fonctionnalisation des nanotubes de carbone sont très développées, les matériaux produits sont souvent coûteux, de formes irrégulières, impurs et ont tendance à former des agrégats, ce qui rend leur manipulation difficile. Malgré l' intense focalisation sur les nanotubes de carbones, la recherche est encore peu développée vers des synthèses alternatives de nanostructures organiques. Plusieurs arrangements moléculaires montrent la capacité d'encapsuler ou de transporter une molécule d'intérêt à l'intérieur de cavités ou de canaux spécifiques, ce qui donne un large potentiel dans des applications en nanotechnologie. Les problèmes majeurs est un contrôle de la longueur de la structure tout en ayant une cavité rigide et une stabilité du matériau. L'objectif global de ce projet de recherche est d' obtenir un nanotube et un nanofilament organiques, covalents, solubles et stables. Pour l' obtention d'un nanotube, il y a deux stratégies proposées qui utilisent comme gabarit soit une polyrotaxane ou un polyméthylméthacrylate afin d'y assembler des dendrimères rigides. Ces dendrimères sont réticulés entre eux et le gabarit est éliminé par hydrolyse menant à la formation d'un vide. Pour l'obtention d'un nanofilament organique, covalent et stable, la stratégie employée est la polymérisation de dendrimères rigides. Un nanofilament a été obtenu par la copolymérisation de deux dendrimères. Ce matériau est fonctionnalisé avec des fullerènes C60 et des porphyrines zinc afin de démontrer son potentiel dans divers domaines de l'électronique

    Electrochemical treatment of industrial sulfidic spent caustic streams for sulfide removal and caustic recovery

    No full text
    Alkaline spent caustic streams (SCS) produced in the petrochemical and chemical manufacturing industry, contain high concentrations of reactive sulfide (HS-) and caustic soda (NaOH). Common treatment methods entail high operational costs while not recovering the possible resources that SCS contain. Here we studied the electrochemical treatment of SCS from a chemical manufacturing industry in an electrolysis cell, aiming at anodic HS- removal and cathodic NaOH, devoid of sulfide, recovery. Using a synthetic SCS we first evaluated the HS- oxidation product distribution over time, as well as the HS- removal and the NaOH recovery, as a function of current density. In a second step, we investigated the operational aspects of such treatment for the industrial SCS, under 300 A m(-2) fixed current density. In an electrolysis cell receiving 205 +/- 60 g S L-1 d(-1) HS- over 20 days of continuous operation, HS- was removed with a 38.0 +/- 7.7 % removal and similar to 80 % coulombic efficiency, with a concomitant recovery of a similar to 12 wt.% NaOH solution. The low cell voltage obtained (1.75 +/- 0.12 V), resulted in low energy requirements of 3.7 +/- 0.6 kW h kg(-1) S and 6.3 +/- 0.4 kW h kg(-1) NaOH and suggests techno-economic viability of this process

    Immobilisation of electrochemically active bacteria on screen-printed electrodes for rapid in situ toxicity biosensing

    Get PDF
    Microbial biosensors can be an excellent alternative to classical methods for toxicity monitoring, which are time-consuming and not sensitive enough. However, bacteria typically connect to electrodes through biofllm formation, leading to problems due to lack of uniformity or long device production times. A suitable immobilisation technique can overcome these challenges. Still, they may respond more slowly than biofllm-based electrodes because bacteria gradually adapt to electron transfer during biofllm formation. In this study, we propose a controlled and reproducible way to fabricate bacteria-modified electrodes. The method consists of an immobilisation step using a cellulose matrix, followed by an electrode polarization in the presence of ferricyanide and glucose. Our process is short, reproducible and led us to obtain ready-to-use electrodes featuring a high-current response. An excellent shelf-life of the immobilised electrochemically active bacteria was demonstrated for up to one year. After an initial 50% activity loss in the first month, no further declines have been observed over the following 11 months. We implemented our bacteria-modified electrodes to fabricate a lateral flow platform for toxicity monitoring using formaldehyde (3%). Its addition led to a 59% current decrease approximately 20 min after the toxic input. The methods presented here offer the ability to develop a high sensitivity, easy to produce, and long shelf life bacteria-based toxicity detectors. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences

    Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential

    Get PDF
    Electrochemical reduction of CO2 provides a way to generate base chemicals from an abundant C1-source under mild conditions, whilst at the same time mitigating CO2 emissions. In this work, a novel class of tailorable, porous electrocatalysts for this process is proposed. Covalent triazine frameworks (CTFs) are grown in situ onto functionalized multiwalled carbon nanotubes. Hydroxyl groups decorating the surface of the multiwalled carbon nanotubes facilitate intimate contact between the carbon nanotubes and CTF, thus promoting efficient electron transfer. The novel hybrid materials generate CO with a faradaic efficiency up to 81% at an overpotential of 380 mV. The selectivity of the electrocatalysts could be linked to the amount of nitrogen present within the framework

    Nitrogen-rich porous carbons for supercapacitors

    No full text

    Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    No full text
    This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES) were fed with pure CO2 (cells A and B). The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE) and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol) was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology

    Poly(vinylidene fluoride) as a porogen to prepare nitrogen-enriched porous carbon electrode materials from pyrolysis of melamine resin

    No full text
    Nitrogen-enriched carbons with hierarchical pore structures were prepared by the direct pyrolysis of melamine resin and poly(vinylidene fluoride) (PVDF) in an inert atmosphere. Our preparation method produced carbons that feature high micropore surface areas of up to 966 m(2) g(-1), with the peak micropore width around 0.5-0.6 nm, and 3-4 nm mesopore channels without the need for a template or activation post-carbonization. The carbons were characterized using N-2 and CO2 sorption analyses, X-ray photoelectron spectroscopy and elemental analysis. The concentrations of nitrogen at the carbon surface were in the range 3.1-4.5 at.%. The electrochemical performance of carbon electrodes was evaluated using cyclic voltammetry, galvanostatic charge-discharge techniques and impedance spectroscopy in 1 MH2 SO4 and 1 M TEABF(4)/acetonitrile. Electrochemical tests in aqueous electrolyte showed excellent rate performance with capacitive behaviour up to 500 mV s(-1) and a specific capacitance of 125 F g(-1) at the current density of 0.05 A g(-1) in a two-electrode cell. In both aqueous and organic electrolytes, good cycling performance are obtain with 96% and 77% of the initial capacitance after 10,000 and 5000 cycles, respectively. (C) 2015 Elsevier Ltd. All rights reserved
    corecore