

Electrochemical sulfide removal and caustic recovery from real spent caustic streams

Eleftheria Ntagia*, Erika Fiset*, Linh Truong Cong Hong*, Eleni Vaiopoulou**, Korneel Rabaey*, ***

*Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium **Concwave, Environmental Science for the European Refining Industry, Boulevard du Souverain, 165 B-1160, Brussels, Belgium *** CAPTURE, www.capture-resources.be

INTRODUCTION

- Spent caustic streams (SCS) are generated in petrochemical refineries at thousands of cubic meters per industry annually.
- SCS contain high concentrations of reactive sulfide (0.1 4 wt.%) and caustic soda (5 12 wt.%) [1, 2].
- Common treatment methods are expensive, with no resource recovery.
- Electrochemical treatment: HS⁻ removal with recovery of elemental sulfur (S⁰), NaOH and hydrogen gas (H₂) [3 5].

METHODS

Industrial sulfidic SCS characteristics		Operational parameters		
Parameter	Average ± SD	Experimental		
рН	>13	Current density	300 A m ⁻²	
Sulfide	1.5 ± 0.4 M	Anolyte	200 gS L ⁻¹ d ⁻¹	
Organic solvents	0.5 ± 0.1 M	Catholyte	12 wt.%	
S ⁰ e ⁻ CEM CEM CEM CEM CEM				
	HS-	Stainless Steel		

DISCUSSION

- High coulombic efficiency and low anode potential indicated production of S⁰.
- The S⁰ particles collected from the anodic chamber were hydrophobic ($\theta > 70^{\circ}$), orthorhombic sulfur (α -S₈).

RESULTS

S ⁰ recovery on the anode surface of the electrochemical cell.	SEM-EDX image of S ⁰ recovered. Magnification 400 X using 20 keV.		
Energy consumption at 300 A m ⁻²			
Energy consumption	Average ± SD		
For wastewater treatment	75.3 ± 5.0 kWh m ⁻³ SCS treated		
For pollutant removal	3.7 ± 0.6 kWh kg ⁻¹ S removed		
For NaOH recovery	6.3 ± 0.4 kWh kg ⁻¹ NaOH recovered		

CONCLUSIONS

Electrolysis as an energy efficient and potentially sustainable

- Oxidation product: ~ 69%
 S%poly-S
 - 80 ± 31% coulombic efficiency
 - 12.3 wt.% NaOH increase
 in the cathodic
 compartment

Sulfur species speciation during the treatment

SCS treatment approach:

- > 10 wt.% onsite NaOH recovery
- Sulfide removed with limited energy input
- > 20% alkalinity decrease and ~15%
 conductivity decrease in the treated SCS

GHENT

UNIVERSITY

 Limited NaOH production at 14-19 d, to be tackled with catholyte dilution

References:. [1] R. Alnaizy, Environ. Prog. 27 (2008) 295–301, [2] I. Ben Hariz et al., Sep. Purif. Technol. 107 (2013) 150–157, [3] P.K. Dutta et al., Water Res. 42 (2008) 4965–4975, [4] K. Rabaey et al. Environ. Sci. Technol. 40 (2006) 5218–5224, [5] E. Vaiopoulou et al. Water Res. 92 (2016) 38–43.

Acknowledgements: KR is supported by the VLAIO-SBO project Get-a-Met, EF by FWO PROJECT MiCrO₂, and EN by UGent. The authors acknowledge the support by BOF Basisinfrastructuur (Grant No. 01B05912) for equipment used in this study.

