5,453 research outputs found

    Rayleigh-Benard Convection in Large-Aspect-Ratio Domains

    Full text link
    The coarsening and wavenumber selection of striped states growing from random initial conditions are studied in a non-relaxational, spatially extended, and far-from-equilibrium system by performing large-scale numerical simulations of Rayleigh-B\'{e}nard convection in a large-aspect-ratio cylindrical domain with experimentally realistic boundaries. We find evidence that various measures of the coarsening dynamics scale in time with different power-law exponents, indicating that multiple length scales are required in describing the time dependent pattern evolution. The translational correlation length scales with time as t0.12t^{0.12}, the orientational correlation length scales as t0.54t^{0.54}, and the density of defects scale as t0.45t^{-0.45}. The final pattern evolves toward the wavenumber where isolated dislocations become motionless, suggesting a possible wavenumber selection mechanism for large-aspect-ratio convection.Comment: 5 pages, 6 figure

    Pattern Formation and Dynamics in Rayleigh-B\'{e}nard Convection: Numerical Simulations of Experimentally Realistic Geometries

    Full text link
    Rayleigh-B\'{e}nard convection is studied and quantitative comparisons are made, where possible, between theory and experiment by performing numerical simulations of the Boussinesq equations for a variety of experimentally realistic situations. Rectangular and cylindrical geometries of varying aspect ratios for experimental boundary conditions, including fins and spatial ramps in plate separation, are examined with particular attention paid to the role of the mean flow. A small cylindrical convection layer bounded laterally either by a rigid wall, fin, or a ramp is investigated and our results suggest that the mean flow plays an important role in the observed wavenumber. Analytical results are developed quantifying the mean flow sources, generated by amplitude gradients, and its effect on the pattern wavenumber for a large-aspect-ratio cylinder with a ramped boundary. Numerical results are found to agree well with these analytical predictions. We gain further insight into the role of mean flow in pattern dynamics by employing a novel method of quenching the mean flow numerically. Simulations of a spiral defect chaos state where the mean flow is suddenly quenched is found to remove the time dependence, increase the wavenumber and make the pattern more angular in nature.Comment: 9 pages, 10 figure

    Small-Angle Excess Scattering: Glassy Freezing or Local Orientational Ordering?

    Full text link
    We present Monte Carlo simulations of a dense polymer melt which shows glass-transition-like slowing-down upon cooling, as well as a build up of nematic order. At small wave vectors q this model system shows excess scattering similar to that recently reported for light-scattering experiments on some polymeric and molecular glass-forming liquids. For our model system we can provide clear evidence that this excess scattering is due to the onset of short-range nematic order and not directly related to the glass transition.Comment: 3 Pages of Latex + 4 Figure

    Multiparametric ultrasound findings in acute kidney failure due to rare renal cortical necrosis

    Get PDF
    Renal cortical necrosis (RCN) is a rare cause of acute kidney failure and is usually diagnosed on the basis of characteristic enhancement patterns on cross-sectional imaging. Contrast-enhanced ultrasound (CEUS) offers benefits in patients with kidney failure in the clinical setting including the use of a nonnephrotoxic intravascular contrast agent and the fact that it can be performed at the bedside in critical cases. Therefore, the aim of this study is to investigate whether CEUS can reliably identify typical imaging features of RCN. We retrospectively analyzed 12 patients with RCN examined in our department and confirmation of the diagnosis by either histopathology, other contrast-enhanced cross-sectional imaging tests, and/or CEUS follow-up. Assessed parameters in conventional US were reduced echogenicity, loss of corticomedullary differentiation, length and width of kidney, hypoechoic rim, resistance index and in CEUS delayed wash-in of contrast agent (>20 s), reverse rim sign, maximum nonenhancing rim and additional renal infarction. Furthermore, imaging features in RCN were compared with the findings in renal vein thrombosis (RVT), among them echogenicity, corticomedullar differentiation, hypoechoic rim, RI value, delayed cortical enhancement, total loss of cortical perfusion and enhancement of renal medulla. All 12 patients showed the reverse rim sign, while a hypoechogenic subcapsular rim was only visible in four patients on B-mode ultrasound. A resistance index (RI) was available in 10 cases and was always less than 1. RI was a strong differentiator in separating RVT from RCN (RI>1 or not measurable due to hypoperfusion as differentiator, p=0.001). CEUS showed total loss of medullary enhancement in all cases of RVT. With its higher temporal resolution, CEUS allows dynamic assessment of renal macro- and microcirculation and identification of the typical imaging findings of RCN with use of a nonnephrotoxic contrast agent

    Two Jovian-Mass Planets in Earthlike Orbits

    Get PDF
    We report the discovery of two new planets: a 1.94 M_Jup planet in a 1.8-year orbit of HD 5319, and a 2.51 M_Jup planet in a 1.1-year orbit of HD 75898. The measured eccentricities are 0.12 for HD 5319 b and 0.10 for HD 75898 b, and Markov Chain Monte Carlo simulations based on derived orbital parameters indicate that the radial velocities of both stars are consistent with circular planet orbits. With low eccentricity and 1 < a < 2 AU, our new planets have orbits similar to terrestrial planets in the solar system. The radial velocity residuals of both stars have significant trends, likely arising from substellar or low-mass stellar companions.Comment: 32 pages, including 11 figures and 5 tables. Accepted by Ap

    Structural Features and Domain Organization of Huntingtin Fibrils

    Get PDF
    Misfolding and aggregation of huntingtin is one of the hallmarks of Huntington disease, but the overall structure of these aggregates and the mechanisms by which huntingtin misfolds remain poorly understood. Here we used site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to study the structural features of huntingtin exon 1 (HDx1) containing 46 glutamine residues in its polyglutamine (polyQ) region. Despite some residual structuring in the N terminus, we find that soluble HDx1 is highly dynamic. Upon aggregation, the polyQ domain becomes strongly immobilized indicating significant tertiary or quaternary packing interactions. Analysis of spin-spin interactions does not show the close contact between same residues that is characteristic of the parallel, in-register structure commonly found in amyloids. Nevertheless, the same residues are still within 20 Å of each other, suggesting that polyQ domains from different molecules come into proximity in the fibrils. The N terminus has previously been found to take up a helical structure in fibrils. We find that this domain not only becomes structured, but that it also engages in tertiary or quaternary packing interactions. The existence of spin-spin interactions in this region suggests that such contacts could be made between N-terminal domains from different molecules. In contrast, the C-terminal domain is dynamic, contains polyproline II structure, and lacks pronounced packing interactions. This region must be facing away from the core of the fibrils. Collectively, these data provide new constraints for building structural models of HDx1 fibrils

    Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Benard Convection

    Get PDF
    The origin of the power-law decay measured in the power spectra of low Prandtl number Rayleigh-Benard convection near the onset of chaos is addressed using long time numerical simulations of the three-dimensional Boussinesq equations in cylindrical domains. The power-law is found to arise from quasi-discontinuous changes in the slope of the time series of the heat transport associated with the nucleation of dislocation pairs and roll pinch-off events. For larger frequencies, the power spectra decay exponentially as expected for time continuous deterministic dynamics.Comment: (10 pages, 6 figures

    The Influence of Horizontal Boundaries on Ekman Circulation and Angular Momentum Transport in a Cylindrical Annulus

    Full text link
    We present numerical simulations of circular Couette flow in axisymmetric and fully three-dimensional geometry of a cylindrical annulus inspired by Princeton MRI liquid gallium experiment. The incompressible Navier-Stokes equations are solved with the spectral element code Nek5000 incorporating realistic horizontal boundary conditions of differentially rotating rings. We investigate the effect of changing rotation rates (Reynolds number) and of the horizontal boundary conditions on flow structure, Ekman circulation and associated transport of angular momentum through the onset of unsteadiness and three-dimensionality. A mechanism for the explanation of the dependence of the Ekman flows and circulation on horizontal boundary conditions is proposed.Comment: 23 pages, 7 figures; to be published in the Topical Issue of the Physica Scripta in 200

    Crossing the Brown Dwarf Desert Using Adaptive Optics: A Very Close L-Dwarf Companion to the Nearby Solar Analog HR 7672

    Get PDF
    We have found a very faint companion to the active solar analog HR 7672 (HD 190406; GJ 779; 15 Sge). Three epochs of high resolution imaging using adaptive optics (AO) at the Gemini-North and Keck II Telescopes demonstrate that HR 7672B is a common proper motion companion, with a separation of 0.79" (14 AU) and a 2.16 um flux ratio of 8.6 mags. Using follow-up K-band spectroscopy from Keck AO+NIRSPEC, we measure a spectral type of L4.5+/-1.5. This is the closest ultracool companion around a main sequence star found to date by direct imaging. We estimate the primary has an age of 1-3 Gyr. Assuming coevality, the companion is most likely substellar, with a mass of 55-78 Mjup based on theoretical models. The primary star shows a long-term radial velocity trend, and we combine the radial velocity data and AO imaging to set a firm (model-independent) lower limit of 48 Mjup. In contrast to the paucity of brown dwarf companions at <~4 AU around FGK dwarfs, HR 7672B implies that brown dwarf companions do exist at separations comparable to those of the giant planets in our own solar system. Its presence is at variance with scenarios where brown dwarfs form as ejected stellar embryos. Moreover, since HR 7672B is likely too massive to have formed in a circumstellar disk as planets are believed to, its discovery suggests that a diversity of physical processes act to populate the outer regions of exoplanetary systems.Comment: Astrophysical Journal, in pres

    Совместная обработка траекторно измерительной информации при испытаниях сложных информационно-управляющих систем

    Get PDF
    Рассмотрен метод траекторных измерений, использующий совместную обработку измерительной информации, полученной от полигонных средств внешнетраекторных измерений и специальной бортовой измерительной аппаратуры при натурных испытаниях сложных информационно-управляющих систем на местах их постоянной дислокации.A method of trajectory measurements, which uses a joint processing of the measuring data, obtained from the proving ground means of external trajectory measurements and special onboard measuring equipment with the full-scale tests of the complex information-control systems at their constant disposition is considered
    corecore