65 research outputs found

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Multi-match Packet Classification on Memory-Logic Trade-off FPGA-based Architecture

    Get PDF
    Packet processing is becoming much more challenging as networks evolve towards a multi-service platform. In particular, packet classification demands smaller processing times as data rates increase. To successfully meet this requirement, hardware-based classification architectures have become an area of extensive research. Even if Field Programmable Logic Arrays (FPGAs) have emerged as an interesting technology for implementing these architectures, existing proposals either exploit maximal concurrency with unbounded resource consumption, or base the architecture on distributed RAM memory-based schemes which strongly undervalues FPGA capabilities. Moreover, most of these proposals target best-match classification and are not suited for high-speed updates of classification rulesets. In this paper, we propose a new approach which exploits rich logic resources available in modern FPGAs while reducing memory consumption. Our architecture is conceived for multi-match classification, and its mapping methodology is naturally suited for high-speed, simple updating of the classification ruleset. Analytical evaluation and implementation results of our architecture are promising, demonstrating that it is suitable for line speed processing with balanced resource consumption. With additional optimizations, our proposal has the potential to be integrated into network processing architectures demanding all aforementioned features.http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6602301Fil: Zerbini, Carlos A. Universidad Tecnológica Nacional. Departamento de Ingeniería Electrónica; Argentina.Fil: Finochietto, Jorge M. Universidad Nacional de Córdoba. Consejo Nacional de Investigaciones Científicas y Técnicas. Laboratorio de Comunicaciones Digitales; Argentina.Ingeniería de Sistemas y Comunicacione

    Reconfigurable network processing: the FPGA case

    Get PDF
    As communication networks evolve towards 100 gigabits per second rates to address increasing demand of data trafic, network processing solutions must be revised and upgraded to support this need. Meanwhile, Field Programmable Gate Array (FPGA) technology is becoming a much more interesting platform were to integrate network processing capabilities and compete with current available solutions. In this paper, we argue that FPGAs can play a signi cant role in this area. To this end, a general discussion on the technology is first introduced to later focus on the speci c requirements to implement network processing architectures. Finally, based on our previous experience on building network devices on FPGAs, we discuss a case study to illustrate some of the main drivers to consider FPGA as an interesting solution for network processing.Sociedad Argentina de Informática e Investigación Operativ

    Congestion management techniques for disruption-tolerant satellite networks

    Get PDF
    Delay and disruption-tolerant networks are becoming an appealing solution for extending Internet boundaries toward challenged environments where end-to-end connectivity cannot be guaranteed. In particular, satellite networks can take advantage of a priori trajectory estimations of nodes to make efficient routing decisions. Despite this knowledge is already used in routing schemes such as contact graph routing, it might derive in congestion problems because of capacity overbooking of forthcoming connections (contacts). In this work, we initially extend contact graph routing to provide enhanced congestion mitigation capabilities by taking advantage of the local traffic information available at each node. However, since satellite networks data generation is generally managed by a mission operation center, a global view of the traffic can also be exploited to further improve the latter scheme. As a result, we present a novel strategy to avoid congestion in predictable delay- and disruption-tolerant network systems by means of individual contact plans. Finally, we evaluate and compare the performance improvement of these mechanisms in a typical low Earth orbit satellite constellation.Fil: Madoery, Pablo Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Fraire, Juan Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentin

    COVID‑19 mitigation by digital contact tracing and contact prevention (app‑based social exposure warnings)

    Get PDF
    A plethora of measures are being combined in the attempt to reduce SARS-CoV-2 spread. Due to its sustainability, contact tracing is one of the most frequently applied interventions worldwide, albeit with mixed results. We evaluate the performance of digital contact tracing for different infection detection rates and response time delays. We also introduce and analyze a novel strategy we call contact prevention, which emits high exposure warnings to smartphone users according to Bluetooth-based contact counting. We model the effect of both strategies on transmission dynamics in SERIA, an agent-based simulation platform that implements population-dependent statistical distributions. Results show that contact prevention remains effective in scenarios with high diagnostic/response time delays and low infection detection rates, which greatly impair the effect of traditional contact tracing strategies. Contact prevention could play a significant role in pandemic mitigation, especially in developing countries where diagnostic and tracing capabilities are inadequate. Contact prevention could thus sustainably reduce the propagation of respiratory viruses while relying on available technology, respecting data privacy, and most importantly, promoting community-based awareness and social responsibility. Depending on infection detection and app adoption rates, applying a combination of digital contact tracing and contact prevention could reduce pandemic-related mortality by 20–56%.publishedVersionFil: Soldano, Germán J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Soldano, Germán J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina.Fil: Fraire Juan A. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Fraire Juan A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Estudios Avanzados en ingeniería y Tecnología; Argentina.Fil: Fraire Juan A. Saarland University. Saarland Informatics Campus; Saarbrücken, Germany.Fil: Finochietto, Jorge M. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Finochietto, Jorge M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Estudios Avanzados en ingeniería y Tecnología; Argentina.Fil: Quiroga; Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Quiroga; Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa

    Computer Science & Technology Series : XIX Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’13 was the nineteenth Congress in the CACIC series. It was organized by the Department of Computer Systems at the CAECE University in Mar del Plata. The Congress included 13 Workshops with 165 accepted papers, 5 Conferences, 3 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. CACIC 2013 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 247 submissions. An average of 2.5 review reports were collected for each paper, for a grand total of 676 review reports that involved about 210 different reviewers. A total of 165 full papers, involving 489 authors and 80 Universities, were accepted and 25 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Multiclass scheduling algorithms for the DAVID metro network

    Get PDF
    Abstract—The data and voice integration over dense wavelength-division-multiplexing (DAVID) project proposes a metro network architecture based on several wavelength-division-multiplexing (WDM) rings interconnected via a bufferless optical switch called Hub. The Hub provides a programmable interconnection among rings on the basis of the outcome of a scheduling algorithm. Nodes connected to rings groom traffic from Internet protocol routers and Ethernet switches and share ring resources. In this paper, we address the problem of designing efficient centralized scheduling algorithms for supporting multiclass traffic services in the DAVID metro network. Two traffic classes are considered: a best-effort class, and a high-priority class with bandwidth guarantees. We define the multiclass scheduling problem at the Hub considering two different node architectures: a simpler one that relies on a complete separation between transmission and reception resources (i.e., WDM channels) and a more complex one in which nodes fully share transmission and reception channels using an erasure stage to drop received packets, thereby allowing wavelength reuse. We propose both optimum and heuristic solutions, and evaluate their performance by simulation, showing that heuristic solutions exhibit a behavior very close to the optimum solution. Index Terms—Data and voice integration over dense wavelength-division multiplexing (DAVID), metropolitan area network, multiclass scheduling, optical ring, wavelength-division multiplexing (WDM). I

    On route table computation strategies in Delay-Tolerant Satellite Networks

    Get PDF
    Delay-Tolerant Networking (DTN) has been proposed for satellite networks with no expectation of continuous or instantaneous end-to-end connectivity, which are known as Delay-Tolerant Satellite Networks (DTSNs). Path computation over large and highly-dynamic yet predictable topologies of such networks requires complex algorithms such as Contact Graph Routing (CGR) to calculate route tables, which can become extremely large and limit forwarding performance if all possible routes are considered. In this work, we discuss these issues in the context of CGR and propose alternatives to the existing route computation scheme: first-ending, first-depleted, one-route, and per-neighbor strategies. Simulation results over realistic DTSN constellation scenarios show that network flow metrics and overall calculation effort can be significantly improved by adopting these novel route table computation strategies.Fil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Madoery, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Charif, Amir (EXT). Commissariat A Energie Atomique; FranciaFil: Finochietto, Jorge Manuel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    A probabilistic query routing scheme for wireless sensor networks

    Get PDF
    The use of wireless sensor networks for information discovery and monitoring of continuous physical fields has emerged as a novel and efficient solution. To this end, a query message is routed through the network to fetch data from sensor nodes and report it back to a sink node. As several applications only require a limited subset of the available data in the network, this query could be ideally routed to fetch only relevant data. In this way, much energy due to message exchange among nodes could be saved. In this paper, we consider the application of computational intelligence on nodes to implement a parallel adaptive simulated annealing (PASA) mechanism able to direct queries to relevant nodes. Besides, a reinforcement learning algorithm is proposed to adapt progressively the query process to the characteristics of the network, limiting the routing space to areas with useful data. Finally, the relevant data collection mechanism is also discussed to illustrate the complete process. We show by extensive simulations that the routing cost can be reduced by approximately 60% over flooding with an error less than 5%.Sociedad Argentina de Informática e Investigación Operativ
    corecore