101 research outputs found

    Osteopontin upregulation in rotavirus-induced murine biliary atresia requires replicating virus but is not necessary for development of biliary atresia

    Get PDF
    AbstractBiliary atresia (BA) is a progressive fibro-inflammatory pediatric liver disease in which osteopontin (OPN), a glycoprotein with inflammatory and fibrogenic activity, may play a pathogenic role. The current studies were conducted in a mouse model of rotavirus-induced BA to test the hypotheses that live but not inactivated rotavirus causes antigenemia, upregulation of hepatic OPN expression, and induction of BA and fibrosis; and that OPN is necessary for development of BA. Prolonged or transient antigenemia developed in mice inoculated with live or inactivated virus, respectively, but only live virus upregulated hepatic OPN and caused BA and fibrosis. OPN was expressed in intra- and extrahepatic bile ducts in healthy mice and in mice with BA. OPN-deficient mice, similar to WT mice, developed BA. Together, these data show that live but not inactivated rotavirus causes upregulation of hepatic OPN expression and BA but that OPN is not necessary for development of BA

    Bipotential Adult Liver Progenitors Are Derived from Chronically Injured Mature Hepatocytes

    Get PDF
    SummaryAdult liver progenitor cells are biliary-like epithelial cells that emerge only under injury conditions in the periportal region of the liver. They exhibit phenotypes of both hepatocytes and bile ducts. However, their origin and their significance to injury repair remain unclear. Here, we used a chimeric lineage tracing system to demonstrate that hepatocytes contribute to the progenitor pool. RNA-sequencing, ultrastructural analysis, and in vitro progenitor assays revealed that hepatocyte-derived progenitors were distinct from their biliary-derived counterparts. In vivo lineage tracing and serial transplantation assays showed that hepatocyte-derived proliferative ducts retained a memory of their origin and differentiated back into hepatocytes upon cessation of injury. Similarly, human hepatocytes in chimeric mice also gave rise to biliary progenitors in vivo. We conclude that human and mouse hepatocytes can undergo reversible ductal metaplasia in response to injury, expand as ducts, and subsequently contribute to restoration of the hepatocyte mass

    Ploidy Reductions in Murine Fusion-Derived Hepatocytes

    Get PDF
    We previously showed that fusion between hepatocytes lacking a crucial liver enzyme, fumarylacetoacetate hydrolase (FAH), and wild-type blood cells resulted in hepatocyte reprogramming. FAH expression was restored in hybrid hepatocytes and, upon in vivo expansion, ameliorated the effects of FAH deficiency. Here, we show that fusion-derived polyploid hepatocytes can undergo ploidy reductions to generate daughter cells with one-half chromosomal content. Fusion hybrids are, by definition, at least tetraploid. We demonstrate reduction to diploid chromosome content by multiple methods. First, cytogenetic analysis of fusion-derived hepatocytes reveals a population of diploid cells. Secondly, we demonstrate marker segregation using ß-galactosidase and the Y-chromosome. Approximately 2–5% of fusion-derived FAH-positive nodules were negative for one or more markers, as expected during ploidy reduction. Next, using a reporter system in which ß-galactosidase is expressed exclusively in fusion-derived hepatocytes, we identify a subpopulation of diploid cells expressing ß-galactosidase and FAH. Finally, we track marker segregation specifically in fusion-derived hepatocytes with diploid DNA content. Hemizygous markers were lost by ≥50% of Fah-positive cells. Since fusion-derived hepatocytes are minimally tetraploid, the existence of diploid hepatocytes demonstrates that fusion-derived cells can undergo ploidy reduction. Moreover, the high degree of marker loss in diploid daughter cells suggests that chromosomes/markers are lost in a non-random fashion. Thus, we propose that ploidy reductions lead to the generation of genetically diverse daughter cells with about 50% reduction in nuclear content. The generation of such daughter cells increases liver diversity, which may increase the likelihood of oncogenesis

    Characterization of Pulmonary Metastases in Children With Hepatoblastoma Treated on Children\u27s Oncology Group Protocol AHEP0731 (The Treatment of Children With All Stages of Hepatoblastoma): A Report From the Children\u27s Oncology Group.

    Get PDF
    Purpose To determine whether the pattern of lung nodules in children with metastatic hepatoblastoma (HB) correlates with outcome. Methods Thirty-two patients with metastatic HB were enrolled on Children\u27s Oncology Group Protocol AHEP0731 and treated with vincristine and irinotecan (VI). Responders to VI received two additional cycles of VI intermixed with six cycles of cisplatin/fluorouracil/vincristine/doxorubicin (C5VD), and nonresponders received six cycles of C5VD alone. Patients were imaged after every two cycles and at the conclusion of therapy. All computed tomography scans and pathology reports were centrally reviewed, and information was collected regarding lung nodule number, size, laterality, timing of resolution, and pulmonary surgery. Results Among the 29 evaluable patients, only 31% met Response Evaluation Criteria in Solid Tumors (RECIST) for measurable metastatic disease. The presence of measurable disease by RECIST, the sum of nodule diameters greater than or equal to the cumulative cohort median size, bilateral disease, and ≥ 10 nodules were each associated with an increased risk for an event-free survival event ( P = .48, P = .08, P = .065, P = .03, respectively), with nodule number meeting statistical significance. Ten patients underwent pulmonary resection/metastasectomy at various time points, the benefit of which could not be determined because of small patient numbers. Conclusion Children with metastatic HB have a poor prognosis. Overall tumor burden may be an important prognostic factor for these patients. Lesions that fail to meet RECIST size criteria (ie, those \u3c 10 mm) at diagnosis may contain viable tumor, whereas residual lesions at the end of therapy may constitute eradicated tumor/scar tissue. Patients may benefit from risk stratification on the basis of the burden of lung metastatic disease at diagnosis

    Identification of PKD1L1 Gene Variants in Children with the Biliary Atresia Splenic Malformation Syndrome

    Get PDF
    Biliary atresia (BA) is the most common cause of end‐stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations — a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient‐parent trios, from the NIDDK‐supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a pre‐specified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious bi‐allelic variants in polycystin 1‐like 1, PKD1L1, a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other non‐cholestatic diseases. Conclusion WES identified bi‐allelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN dataset. The dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, biologically plausible, cholangiocyte‐expressed candidate gene for the BASM syndrome

    Presentation and Outcomes of Infants With Idiopathic Cholestasis: A Multicenter Prospective Study

    Get PDF
    Objectives: The aim of the study was to determine the frequency and natural history of infantile idiopathic cholestasis (IC) in a large, prospective, multicenter cohort of infants. Methods: We studied 94 cholestatic infants enrolled up to 6 months of age in the NIDDK ChiLDReN (Childhood Liver Disease Research Network) "PROBE" protocol with a final diagnosis of IC; they were followed up to 30 months of age. Results: Male sex (66/94; 70%), preterm birth (22/90 with data; 24% born at 1 mg/dL and/or ALT > 35 U/L; n = 7), and exited healthy (resolved disease per study site report but without documented biochemical resolution; n = 34). Biochemical resolution occurred at median of 9 months of age. GGT was <100 U/L at baseline in 34 of 83 participants (41%). Conclusions: Frequency of IC and of death or liver transplant was less common in this cohort than in previously published cohorts, likely because of recent discovery and diagnosis of genetic etiologies of severe/persistent cholestasis that previously were labeled as idiopathic. Preterm birth and other factors associated with increased vulnerability in neonates are relatively frequent and may contribute to IC. Overall outcome in IC is excellent. Low/normal GGT was common, possibly indicating a role for variants in genes associated with low-GGT cholestasis-this warrants further study

    Noncirrhotic portal fibrosis

    No full text
    corecore