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SUMMARY

Adult liver progenitor cells are biliary-like epithelial
cells that emerge only under injury conditions in the
periportal region of the liver. They exhibit phenotypes
of both hepatocytes and bile ducts. However, their
origin and their significance to injury repair remain
unclear. Here, we used a chimeric lineage tracing
system to demonstrate that hepatocytes contribute
to the progenitor pool. RNA-sequencing, ultrastruc-
tural analysis, and in vitro progenitor assays revealed
that hepatocyte-derived progenitors were distinct
from their biliary-derived counterparts. In vivo line-
age tracing and serial transplantation assays showed
that hepatocyte-derived proliferative ducts retained
a memory of their origin and differentiated back
into hepatocytes upon cessation of injury. Similarly,
human hepatocytes in chimeric mice also gave rise
to biliary progenitors in vivo. We conclude that hu-
man and mouse hepatocytes can undergo reversible
ductal metaplasia in response to injury, expand as
ducts, and subsequently contribute to restoration
of the hepatocyte mass.

INTRODUCTION

Liver stem/progenitor cells, or hepatic oval cells, appear and un-

dergo amassive expansion in chronic liver damage. In human dis-

ease, the extent of biliary-like progenitor proliferation emanating

from the portal triads consistently correlates with the degree of

clinical impairment (Lowes et al., 1999; Sancho-Bru et al., 2012).

Experimental injury models in rodents designed to model this

biliary progenitor proliferation have demonstrated that duct-like

‘‘oval cells’’ can differentiate into both hepatocytes and bile ducts

(Evarts et al., 1987; Wang et al., 2003; Yovchev et al., 2008). This

finding suggested that the progenitor compartment represents a

clinically important cell population thatcouldbepharmacologically

manipulated to improve liver function in advanced liver disease

where mortality is high and few treatment options currently exist.

A long-standing debate in the field has centered on whether

progenitors are derived from biliary-like stem cells that acquire

hepatocyte functions or from hepatocytes that lose hepatocyte

functions (Farber, 1956; Michalopoulos, 2014; Sell, 1990).

Recently, we showed that clonally traced biliary-derived Sox9+

proliferative ducts insignificantly contributed to regeneration of

the hepatocyte pool in several classic mouse oval cell injury

models (Tarlowet al., 2014). Using increasingly sophisticated line-

age tracing tools, several other groups have also demonstrated a

very limited ability of nonhepatocyte progenitors to contribute to

mouse liver regeneration in homeostasis and oval cell injuries (Es-

pañol-Suñer et al., 2012; Yanger et al., 2014; Schaub et al., 2014).

On the contrary, good evidence now exists that hepatocytes

can ‘‘transdifferentiate’’ into ductal biliary epithelial cells in

certain injury models (Michalopoulos et al., 2005; Sekiya and Su-

zuki, 2014; Tanimizu et al., 2014; Yanger et al., 2013) and/or by

forced genetic modulation of the developmentally important

Notch (Jeliazkova et al., 2013; Yanger et al., 2013) and Hippo

pathways (Yimlamai et al., 2014). In the context of cancer, multi-

ple groups have shown that hepatocytes can be transformed

into a biliary-cell-like tumor, cholangiocarcinoma, previously

thought to originate exclusively from cholangiocytes (Fan et al.,

2012; Sekiya and Suzuki, 2012).

Nevertheless, it remains unclear whether hepatocyte-to-duct

conversion is reversible or how this process may contribute to

liver regeneration. The observation that dedifferentiated or

mesenchymal hepatocytes are primed to reacquire hepatic func-

tions in vitro (Chen et al., 2012; Dunn et al., 1989; Santangelo

et al., 2011; Tanimizu et al., 2014) raised the question of whether

hepatocyte-derived progenitors could differentiate back to hepa-

tocytes in vivo. Here we characterized hepatocyte-derived pro-

genitor cells in a mouse model of oval cell activation. We utilized

hepatocyte-chimericmice to test the hypothesis that hepatocyte-

to-ductal metaplasia is a reversible process. Our results indicate

that both human and mouse hepatocytes undergo metaplasia to

a distinctive progenitor state that can be reversed following re-

covery and, therefore, may represent a physiologically important

pool of hepatocyte precursors in chronic liver injury.

RESULTS

Hepatocytes Contribute to the Oval Cell Response
after Extended Injury
To specifically track the fate of mature hepatocytes in liver

injury, we generated mice with chimeric livers by transplanting
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ROSA-mTmG hepatocytes into Fah�/� mice (Figure 1A). After

10 weeks of repopulation, the hepatocyte compartment, but

not other cell types, were replaced by donor mTomato+ cells

in agreement with previous detailed analyses in our lab (Overturf

et al., 1997, 1999; Tarlow et al., 2014).

Next, we induced a prototypical oval cell injury (Preisegger

et al., 1999) by feeding mice a 0.1% 3,5-diethoxycarbonyl-1,4-

dihydrocollidine (DDC) diet (Dorrell et al., 2011; Español-Suñer

et al., 2012; Huch et al., 2013; Rodrigo-Torres et al., 2014;

Yanger et al., 2013). As expected from previous work, 2 weeks

Figure 1. Hepatocyte-Derived Oval Cells Appear after Extended Injury

(A) Purified fluorescently marked hepatocytes were transplanted into the spleen of Fah�/� animals. After 10 weeks of repopulation, DDC injury was given for

1–8 weeks. Since only hepatocytes were marked at baseline, any fluorescent-marked ductal cells observed after injury were inferred to be hepatocyte derived.

(B) OPN+ ductal proliferation did not colocalize with hepatocyte marker mTomato after 2 weeks injury (arrowhead; bar, 50 mm).

(C) After 6 weeks of injury, a subset of OPN+ ductal cells colocalized with hepatocyte-derived mTomato-marked cells (arrow); however, the majority of ductal

proliferation was still host derived (arrowhead). Induction of OPN correlated with the loss of FAH (arrows). Bar, 50 mm.

(D) Hepatocyte-derived progenitors (mTomato+ OPN+) incorporated EdU 6 hr after a pulse after 6 weeks of injury.
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of DDC injury induced host-derived OPN+ Krt19+ ductal prolifer-

ation in chimeric mice (Figure 1B).

Following 6 weeks of DDC injury, however, cords of donor

hepatocyte-derivedmTomato+ cells were prominently observed

in the periportal region and colocalized with biliary ductal

markers OPN (Figure 1), SOX9, and A6 (Figure S2, available on-

line), in agreement with Yanger et al. (2013). OPN+ mTomato+

cells had ductal morphology with oval-shaped nuclei. The induc-

tion of OPN in mTomato+ hepatocyte-derived ductal cells corre-

sponded with a downregulation of the hepatocyte marker FAH

(Figure 1C). Hepatocyte-derived ducts incorporated EdU; thus,

we called these cells hepatocyte-derived proliferative ducts

(hepPDs) (Figure 1D). Despite the emergence of numerous

hepPDs, the majority of ducts nonetheless arose from the host

and were termed biliary-derived proliferative ducts (bilPDs). As

a second, independent method of marking mature hepatocytes,

we also administered a low dose of a hepatocyte-specific

rAAV8-TTR-Cre to adult ROSA-Confetti reporter mice (Malato

et al., 2011; Yanger et al., 2013). The findings after 6 weeks of

DDC injury were similar to the chimera-based tracing results

(n = 3). Single clonally marked hepatocytes delineated by a single

color of the reporter transgene expanded to cords of 10–40 cells

with biliary morphology, indicating that hepatocyte-derived

duct-like cells were proliferative (Figure S2).

Isolation of Hepatocyte-Derived Liver Progenitor
Cells with Surface Marker MIC1-1C3
To further study hepatocyte-derived proliferative ducts

(hepPDs), we adapted a fluorescence-activated cell sorting

(FACS)-based assay developed by us (Dorrell et al., 2011). We

used the pan-ductal marker MIC1-1C3 to isolate antigenically

defined cells based on cell surface phenotype (Figure 2A).

Hepatocyte chimeric ROSA-mTmG/Fah�/� mice were treated

for 1–8 weeks with DDC to induce oval cell activation. Livers

were dissociated into single cells, and MIC1-1C3+ CD45�

CD31� CD11b� CD26� PI� cells (‘‘MIC1-1C3+ cells’’) were

FACS purified by mTomato-fluorescence status (Figure 2A).

Without injury, less than 0.1% of MIC1-1C3+ cells were

mTomato+ (median 0.067% n = 4). Visual inspection of FACS-

positive cells from uninjured mice confirmed that most

mTomato+ ductal cells had small portions of adjacent mem-

brane-localized fluorescent protein likely from an adjacent hepa-

tocyte (Figure S1). In contrast, 8.7%–39.3% of MIC1-1C3+ oval

cells were mTomato+ after 4–8 weeks of injury and thus deter-

mined to be of donor hepatocyte origin (n = 14) (Figure 2B).

Hepatocyte-to-ductal cell conversion was rare before 14 days

of injury and moderately correlated with the duration of injury

(linear regression r2 = 0.63). Again, our secondary marking strat-

egy using low-dose rAAV8-Ttr-Cre followed by DDC injury

yielded analogous results when FACS phenotyping was used

to detect hepatocyte-to-duct metaplasia (Figure S2).

To further characterize the different populations of ductal pro-

genitors, FACS-isolated cells were fixed and analyzed by light

and transmission electron microscopy (Figures 2C–2F). Consis-

tent with historical descriptions of oval cells, hepPDs were highly

similar to bile duct epithelium by hematoxylin and eosin (H&E) or

Hoechst 33342 staining. Compared with hepatocytes, hepPDs

were significantly smaller in cell diameter (mean 14.6 mm ± SD

3.2 versus 33.1 mm ± 4.1; p < 0.0001), and the nucleus repre-

sented a greater fraction of total cell area (0.417 ± 0.085 versus

0.138 ± 0.035; p < 0.0001). BilPDs were smaller in diameter

compared with hepPDs (11.3 mm ± 0.9 versus 14.6 ± 3.2; p <

0.0001) and had significantly greater fractional nucleus size

(0.489 ± 0.054 versus 0.417 ± 0.085; p < 0.001). Rare binucleated

hepPDs were observed; however, no binucleated bilPDs were

found (data not shown).

HepPDs exhibited additional ultrastructual differences, in-

cluding a greater abundance of mitochondria and decreased

heterochromatin compared with bilPDs. Lysosomal contents in

hepPDs were suggestive of autophagy (arrow) as a potential

mechanism for organelle and cytoplasm volume reduction.

Glycogen granules were found in mature hepatocytes but were

largely absent in hepPDs (Figure S3).

Hepatocyte-Derived MIC1-1C3+ Cells Express
Progenitor-Associated Genes
To determine whether the morphological differences between

donor-derived hepPDs and host-derived bilPDs corresponded

to changes in gene expression, mRNA was extracted from

FACS-purified hepatocytes, host-derived MIC1-1C3+ cells, and

hepatocyte-derived mTomato+ MIC1-1C3+ cells for global

expression analysis. RNA-sequencing indicated that 98.4%–

99.2% of mTomato tags were derived from FACS-purified

MIC1-1C3+ mTomato+ cells, within the expected accuracy of

FACS isolation (n = 4 paired samples, normalized to reads per

million). Genotyping for Fah confirmed that FACS purification

based on the mTomato phenotype effectively separated geneti-

cally distinct host- fromdonor-derived progenitor cells (FigureS4).

FACS-isolated hepatocyte-derived MIC1-1C3+ cells from five

independent experiments showed a unique gene expression

phenotype according to unsupervised clustering (Figure 3B)

and principle component analyses (Figure S4). Hepatocyte-

derived ducts were more similar to biliary-derived ducts than

the corresponding parental hepatocytes isolated from DDC

injured chimeras. Nevertheless, more than 2,010 genes were

significantly differentially expressed (>2-fold, q < 0.01, RPKM >

1 in either group) between the two duct progenitor subtypes. A

total of 4,714 genes were differentially expressed between

hepPDs and parental hepatocytes.

Next we examined expression of genes previously used as

lineage tracing promoters to study ductal liver progenitors in

mice, including Sox9, Spp1 (also called Opn), and Hnf1b (Fig-

ure 3C) (Español-Suñer et al., 2012; Furuyama et al., 2011; Ro-

drigo-Torres et al., 2014). Expression levels of these genes

were highly enriched in both progenitor cell types compared

with hepatocyes, but hepPDs and bilPDs did not express signif-

icantly different levels of Sox9 (92.44 ± 15.41 mean RPKM ± SD

versus 102.56 ± 29.11; false discovery rate [FDR] q value = 0.87),

Spp1 (17,759.8 ± 1,095.5 versus 18,618.3 ± 587.6; q = 0.84), or

Hnf1b (158.9 ± 12.9 versus 176.4 ± 21.4; q = 0.72). Thus, conver-

sion of hepatocytes was associated with increased expression

of ductal markers. Notably, not all ductal marker genes were

highly induced. Krt19 and EpCam were expressed at intermedi-

ate levels in hepPDs. For example, Krt19 levels in hepPDs were

119-fold higher than in hepatocytes (42.53 ± 23.45 RPKM

mean ± SD, n = 5 versus 0.36 ± 0.29; n = 3, q < 1 3 10�31) but

15-fold lower compared with bilPDs (657.89 ± 65.25; n = 5, q <

1 3 10�44). Gene expression differences were validated by

Cell Stem Cell

Hepatocyte-Ductal Metaplasia Is Reversible

Cell Stem Cell 15, 605–618, November 6, 2014 ª2014 Elsevier Inc. 607



qRT-PCR (Figure S4). Interestingly, FACS-purified hepatocytes

expressed the highest levels of the putative progenitor marker

Lgr5 when compared with either progenitor subtype (5.5- or

13.4-fold higher, q < 8 3 10�15).

Compared to the parental mature hepatocytes from which

they derive, hepPDs expressed significantly lower levels of albu-

min (Alb), homogentisic acid dehydrogenase (Hgd), Cyp7a1, the

rate limiting enzyme in bile acid biosynthesis, coagulation factor

IX (F9), and hepatocyte-nuclear factor 4 (Hnf4a). Importantly,

expression of a subset of hepatocyte-associated genes in

hepPDs was similar to bilPDs (e.g., Alb, Hgd, Cyp7a1), whereas

others were intermediate between hepatocytes and bilPDs (e.g.,

Hnf4a, F9). The fact that mature hepatocyte genes were ex-

pressed at ratios different from hepatocytes themselves argues

against hepatocyte contamination as the source of these

transcripts.

Hepatocyte-to-Ductal Transition Correlates with
Induction of Mesenchymal Genes
Gene set enrichment analysis (GSEA) was performed to identify

pathways that were differentially active between cell subpopu-

lations. Although hepPDs expressed many ductal progenitor

Figure 2. Hepatocyte-Derived Liver Progenitor Cells Are Isolated with MIC1-1C3 Antibody

(A) Dissociated livers were FACS purified with gates applied for FSC/SSC (to include ductal cells, as shown), pulse width (not shown), PI� (not shown), and

MIC1-1C3+ CD11b� CD31� CD45�. MIC1-1C3+ cells were separated based on mTomato fluorescence (mature hepatocyte origin). Without injury, mTomato+

cells were a trace component of MIC1-1C3+ population but increased with injury.

(B) The percentage of ductal cells derived from mTomato-marked hepatocytes is plotted against the number of days of DDC injury. Hepatocyte-derived

MIC1-1C3+ ductal progenitors emerged after approximately 4 weeks of injury.

(C) Nucleus-to-cytoplasmic ratios in FACS-isolated populations were significantly different in each population.

(D) Cell diameters were significantly different in each FACS-isolated population. Pairwise t test; ***p < 0.001, ****p < 0.0001.

(E) Representative H&E staining (bars, 10 mm) from directly isolated cells from each population.

(F) Representative transmission electron photomicrographs are shown from each cell population (bar size indicated). The arrow indicates a membrane-bound

structure in a lysosome adjacent to mitochondria.
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markers at levels similar to those of bile duct-derived cells, they

also retained patterns of gene expression closely associated

with hepatocyte function, albeit at low levels. Compared with

bilPDs, hepPDs showed strong enrichment (FDR q value <

0.05) of gene sets for hepatocyte functions, including fatty acid

metabolism, complement and coagulation cascades, drug

metabolism and cytochrome P450, and branched amino acid

degradation. Thus, hepatocyte-derived progenitors retained

basal levels of transcription for genes encoding mature hepato-

cyte functions.

To understandwhat pathways were driving the hepPD conver-

sion, we compared hepPDs to the parental hepatocyte popula-

tion. Gene sets for notch signaling pathway, hedgehog signaling

pathway, and the Wnt signaling pathway were significantly

Figure 3. Hepatocyte-Derived Oval Cells Are Transcriptionally Distinct from Bile Ducts
(A) FACS separation of MIC1-1C3+ cells based on mTomato fluorescence resulted in 98.4%–99.2% enrichment in mTomato+ cells relative to mTomato� cells

(paired analysis, n = 4 animals).

(B) Unsupervised hierarchical clustering (Ward’s method) of hepPDs (n = 5), bilPDs (n = 5), and hepatocytes (n = 3).

(C) Gene expression levels (RPKM) for progenitor-associated genes.

(D) Gene expression levels for hepatocyte-associated genes (mean ± SD).

(E) Cluster analysis shows that hepPDs express biliary progenitor-associated genes and a distinctive mesenchymal signature.
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induced (q < 0.2). Additional gene sets enriched in hepPDs

included axon guidance, melanogenesis, tight junctions, and

transforming growth factor b (TGF-b) signaling gene sets (q <

0.25).

A total of 178 genes were significantly upregulated in hepPDs in

pairwise comparisons with both hepatocytes and bilPDs. This

finding again shows that the gene expression signature of hepPDs

could not be explained by simple hepatocyte contamination.

Notably, the transcription factor Zeb1, a master regulator epithe-

lial-to-mesenchymal transition (EMT) (Kalluri andWeinberg, 2009),

was overexpressed in hepPDs compared with bilPDs (3.6-fold,

q < 93 10�36) and hepatocytes (3.3-fold, q < 23 10�8). Additional

genes in this group associated with EMT included Vim (Alison

et al., 1996; Demetris et al., 1996), Mst1r, Fzd10, and c-Kit

(Chen et al., 2012; Fujio et al., 1994; Yovchev et al., 2008; Wang

et al., 2003). Hepatocyte-derived ducts also showed enrichment

of genes expressed in neuronal progenitors that were previously

identified in human ductular reactions or experimentally induced

oval cells, including Nes (Gleiberman et al., 2005), neuronal-

cadherin (also called Cdh2) (Mosnier et al., 2009), and Ncam1

(Roskams et al., 1990; Shin et al., 2011; Zhou et al., 2007). Smo,

an intermediate in the hedgehog pathway proposed to regulate

epithelial-mesenchymal transitions in the liver (Michelotti et al.,

2013), was highly upregulated in hepPDs compared with hepato-

cytes (36-fold, q < 1 3 10�16) but similar to bilPDs (q = 0.46). A

complete list of enriched gene sets and differentially expressed

genes can be found in the Supplemental Information.

Hepatocyte and Bile Duct-Derived Oval Cells Are
Functionally Distinct In Vitro
Given that hepatocyte-derived ducts were distinct from bile

ducts with respect to gene expression patterns and ultrastruc-

tural features, we hypothesized that they were also functionally

distinct. After 6 weeks of DDC injury, chimeric livers were disso-

ciated into single cells and seeded into our previously published

organoid forming assay for liver progenitor activity (Huch et al.,

2013). Organoid formation was robust. Despite the fact that

hepPDs expressed Sox9, Hnf1b, and Lgr5, we found that orga-

noids were universally negative for fluorescent protein mTomato

(Figure 4A). When FACS-purified MIC1-1C3+ cells from injured

chimeras were seeded into matrigel (500–2,000 cells/animal),

only mTomato-negative host bile duct-derived cells formed or-

ganoids, hollow structures >20 cells that could be passaged

multiple times (n = 6 animals, 50–200 organoids scored/animal).

Interestingly, one-third of hepPDs and �1% host MIC1-1C3+

cells seeded into matrigel formed mesenchymal-like structures

with fillipodia projections (Figures 4D and 4E). When cultured

cells were exposed to hepatocyte differentiation medium con-

taining dexamethasone and oncostatin-M, hepPDs showed an

enhanced ability to upregulate albumin mRNA (Figure 4F)

Figure 4. HepPDs Are Functionally Distinct In Vitro

(A) Fah�/� mice were repopulated with Fah+/+ Rosa-mTomato+ hepatocytes and injured with DDC.

(B) Organoids derived from crude nonparenchymal preps from DDC injured chimeric liver were seeded in matrigel for organoid formation. Hepatocyte-derived

mTomato+ cells (arrows) did not initiate organoids. All organoids were mTomato� (arrowhead).

(C) MIC1-1C3+ mTomato+ and mTomato� cells were seeded into matrigel for organoid formation. All organoids were host derived (50–200 counted/animal, n = 6

animals).

(D) HepPDs formed fillipodia (arrows) in matrigel while mTomato� bilPDs formed spherical organoids.

(E) Fillipodia formation was quantified as a fraction of seeded cells.

(F) HepPDs cultured in hepatic differentiation medium induced albumin mRNA with 10.8-fold greater efficiency than bilPDs or MIC1-1C3+ cells from uninjured

Sox9-CreERT2 reporter mice (unpaired t test; ***p < 0.001).
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compared with Rspo-1 containing expansion medium. The abil-

ity of hepatocyte-derived progenitors to reactivate hepatocyte

gene expression in vitro is in agreement with a recent publication

(Tanimizu et al., 2014).

To confirm that the fluorescent reporter protein was not pre-

venting organoid formation, we switched the reporter to the

host by generating Fah�/� ROSA-mTmG mice. We then trans-

planted these mice with unmarked wild-type hepatocytes. After

6 weeks DDC injury, >10% of MIC1-1C3+ cells were hepatocyte

derived by FACS (n = 2; Figure S5). Only host-derived mTomato+

bilPDs formed organoids, and donor-derived hepPDs cells

(MIC1-1C3+ mTomato�) accounted for nearly all cells with

mesenchymal filipodia. This finding also provides an additional

indication that organoid-forming bile duct progenitor cells did

not contribute to repopulation of the Fah�/� liver in the chimeri-

zation process (Overturf et al., 1996, 1997; Tarlow et al., 2014).

Given that hepPDs expressed a partial EMT signature and basal

levels of hepatocyte-associated genes, we hypothesized that

the conversion could be reversed through a mesenchymal-to-

epithelial transition (MET) (Li et al., 2011; Yovchev et al., 2008).

Sox9+ Hepatocyte-Derived Progenitor Cells Revert
Back to Hepatocytes In Vivo after Injury Subsides
Continuous DDC injury induced the conversion of some hepato-

cytes to a highly ductal phenotype. We therefore wondered

whether this fate conversion was highly stable as previously

suggested (Yanger et al., 2013) or whether the cells retained

the ability to revert to their cell of origin upon cessation of the

injury. To ask this question, we performed lineage tracing with

a tamoxifen-inducible Sox9 reporter. Our RNA-seq expression

data (Figure 3) indicated that Sox9 was expressed at high levels

in hepPDs; therefore, we reasoned that a Sox9-CreERT2 allele

could be used to specifically track the fate of hepatocyte-derived

progenitor cells during an injury recovery period.

Chimeric mice were generated by transplanting gravity-puri-

fied Sox9-CreERT2 ROSA-mTmG hepatocytes into Fah�/�

recipient mice. We allowed 8–10 weeks for repopulation.

Next, we induced oval cell injury in chimeric mice by feeding

0.1% DDC. After 4 weeks, a low-dose pulse of tamoxifen

(15 mg/kg) was given to induce recombination in Sox9+ hepato-

cyte-derived cells, converting their baseline red color to green.

DDC was continued for two additional weeks to allow tamoxifen

to wash out and residual mTomato protein to degrade in recom-

bined cells. At the end of the DDC injury, 1/3 partial hepatectomy

was performed to measure the post-injury frequency of hepato-

cyte-derived duct cells. Following hepatectomy, animals were

placed on a regular diet to allow healing and in vivo tracing of he-

patocyte-derived liver progenitors in a 4-week recovery period

(Figure 5A). Thus, we were able to monitor the phenotype of

Sox9-CreERT2-marked hepatocyte-derived progenitor cells

within the same animals before and after injury recovery.

At the peak of injury, the majority of Sox9-marked cells ex-

pressed the classic oval cell marker A6 and were arranged in

ductal cords (Figure 5B). At this injury baseline, only a small per-

centage (6.6%, range 3.5%–10.5%, n = 4) of Sox9-CreERT2

marked cells coexpressed the hepatocyte marker FAH (Figures

5C and 5D). No tamoxifen-independent recombination was

observed (Figure S6F). Importantly, the frequency of Sox9-

marked hepatocytes was markedly increased after a 4-week re-

covery period in all animals tested (Figures 5E and 5F). These

cells had hepatocyte morphology and were positive for hepato-

cyte markers HNF4a andMUP (Figure S6). The average increase

was �5-fold from the immediate postinjury benchmark: 33.5%

(range 22.9%–38.96%; n = 4, paired t test p = 0.0067, Figure 5G).

This notable shift in the ratio of ductal progenitors:hepatocytes

strongly suggested that a significant fraction of hepPDs had re-

differentiated back into hepatocytes once the injury subsided. It

is worth noting that many hepatocyte-derived ducts had not re-

activated the hepatocyte program at the 4-week recovery time

point. This may be explained by the fact that signs of liver dam-

age persist in the DDC model for many weeks after reinstitution

of a normal diet (Figure S6).

Clonal Analysis of Hepatocyte-Derived Progenitors
in a New Microenvironment
To further determine whether hepatocyte-derived ducts could

revert to functional hepatocytes in the absence of ongoing injury,

we performed serial transplantation of marked cells from chimeric

mice treated with DDC for 6 weeks. This experiment differs from

the lineage tracing after stopping the DDC injury in that the cells

were transferred into a liver not undergoing oval cell injury. In this

experiment, donor hepatocytes that had not undergone ductal

metaplasia retained their original mTomato red color, whereas

cells that transdifferentiated were marked mGFP because of their

Sox9 expression. The two populations competed with each other

for engraftment and repopulation of a secondary host.

We used low-speed gravity centrifugation to enrich ductal

cells for transplantation. Before transplantation, 6.3% of

ROSA-mTmG cells were mGFP+ (22/333 in 5 random fields, Fig-

ure 6B). Over 90% of these had a highly ductal phenotype and

did not express mature hepatocyte markers. A total of 2 million

cells were then transplanted into Fah�/� recipient mice and har-

vested after 5 weeks for analysis (Figure 6C). We found that

mGFP-marked donor cells were nearly as efficient as mTo-

mato-marked hepatocytes at engrafting in a new microenviron-

ment: 2.3%–4.1% of grafts were mGFP+ compared with 6.3%

prior to transplant. Importantly, over 60%of the engrafted clones

from green marked cells were clearly hepatocytic (range 62%–

81%). They were FAH+, had hepatocyte morphology in terms

of size and cell shape, were MUP positive (Figure S6), and

most importantly formed repopulation nodules in the Fah�/� liver

(Figures 6D and 6E). Cells from a DDC-treated Sox9-CreERT2

chimera that was not given tamoxifen were transplanted into

Fah�/� mice as a control. No green nodules formed in the host,

indicating that the hepatocytes were not marked by Sox9-

CreERT2 activation in the process of transplantation (0/627

and 0/777 hepatocyte nodules, n = 2 mice; data not shown).

Together, these experiments show that a large fraction of

hepPDs converted back to the hepatocyte fate despite their

highly ductal phenotype and gene expression profile. This is in

contrast to normal ductal progenitors that lack the ability to pro-

duce hepatocytes unless they are expanded and manipulated

in vitro prior to transplantation (Huch et al., 2013).

Human Hepatocytes Morph into Oval Cells following
Sustained Injury
Finally, we asked whether the hepatocyte-ductal metaplasia

mechanism might be conserved in human hepatocytes. To test
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Figure 5. HepPDs Revert Back to Hepatocyctes In Vivo

(A) Fah+/+ ROSA-mTmGSox9-CreERT2 hepatocyteswere transplanted into Fah�/�mice to generate chimeras. DDC injury was given to repopulated chimeras for

4 weeks, a low-dose pulse of tamoxifen was given (15 mg/kg), and injury was continued for an additional 2 weeks.

(B) Tissue harvested by 1/3 partial hepatectomy showed most Sox9-CreERT2-marked (mGFP+) cells colocalized with A6 antigen (arrowhead).

(C) Low-power view shows Sox9-marked ductal cells in periportal zone.

(D) Sox9-CreERT2-marked cells have biliary morphology that do not colocalize with hepatocyte marker FAH.

(E) Following a 4-week recovery period, mGFP+ hepatocytes localized in the portal area.

(F) Upon healing, Sox9-CreERT2-marked cells assumed hepatocyte morphology colocalized with FAH (arrow).

(G) Within-animal comparison indicated that recovery from DDC injury was associated with a 5-fold increase in marked hepatocytes (6.6% versus 33.5%; **p <

0.01, paired t test; n = 4).
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the potential of human hepatocytes to undergo ductal metaplasia

in vivo, we humanized the hepatocyte compartment of Fah�/�

Rag2�/� Il2rg�/� (FRG) triple knockout mice by human hepato-

cyte transplantation (Azuma et al., 2007). Moderately humanized

(>1500 mg/ml human serum albumin [HSA] =�30% repopulation)

or highly humanized (>4500 mg/ml HSA = �90%) FRGmice were

administered 0.1%DDC diet for several weeks. The diet was well

tolerated and produced hepatomegaly, dramatic darkening of the

liver, and ductal proliferation. In 3/6 mice treated with DDC, hu-

man hepatocytes expressed EpCAM and morphed into duct-

like cords with poorly defined lumen, oval-shaped nuclei, and

scant cytoplasm (Figure 7B). As a control for antibody specificity,

Figure 6. HepPDs Differentiate Back into

Hepatocytes upon Serial Transplantation

(A) mGFP+ hepPD and mTomato+ hepatocytes

were dissociated as single cells from DDC-injured

chimeric mice for intrasplenic transplantation into

Fah�/� mice.

(B) Sox9-CreERT2+ mGFP+ cells were smaller

than hepatocytes and represented 6.3% of mTmG

cells scored in five random fields before trans-

plantation.

(C) After 5 weeks of NTBC cycling, we assessed

the rate at which mGFP+ hepPDs contributed to

repopulation. mGFP+ clones were smaller than

mTomato+ clones.

(D) Hepatocyte nodules expressed hepatocyte

marker FAH.

(E) Nodules did not express biliary/progenitor

marker OPN.

EpCAM+ ductal cords were observed in

cirrhotic human liver, but not in humanized

mice maintained on NTBC or DDC injured

mouse hepatocyte chimeras (Figure S7).

EpCAM+ cells coexpressed low levels of

FAH, confirming their donor origin. FAHlow

ductal cords were often adjacent to or in-

tertwined with mouse ductal proliferations

with poorly defined lumen (Figure S7).

Next, whole chimeric livers were ho-

mogenized to assess levels of human-

specific mRNAs. Human KRT19 mRNA

was detected in human liver surgical bi-

opsies, but not mouse liver control sam-

ples, by qRT-PCR (Figures 7C and 7D).

No humanized animals maintained on

normal chow expressed KRT19 mRNA

(n = 0/11) or showed evidence of human

KRT19+ cells (Figure S7). In contrast,

robust induction of KRT19 was observed

in 3 of 6 chimeric mice treated with DDC.

KRT19+ chimeric animals represented

three different human hepatocyte donors.

KRT19 levels, normalized to human

LAMIN A/C, ranged from 9- to 285-fold

lower than normal human liver.

Finally, we wished to determine

whether DDC oval cell injury would

induce the expression of a range of human bile duct genes in

human hepatocytes. We performed RNA-seq on whole liver ho-

mogenates and used a custom transcriptome-based index (see

Experimental Procedures) to achieve highly species-specific

gene alignment of tags (0.01%–0.2% erroneous assignment

with known single species controls) (Figure 7E). Compared

with humanized mice on normal chow, DDC-fed chimeric mice

had increases in multiple bile duct-associated genes, including

SPP1, SOX9, KRT7 (p < 0.001); CD44 (p < 0.01); and VIM (p <

0.05) (Figure 7F). Together, these data are consistent with the

direct conversion of human hepatocytes into biliary-like prolifer-

ative ductal cells in chronic liver injury.
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DISCUSSION

Until recently, the adult mouse liver was thought to harbor facul-

tative stem cells residing in the biliary duct system and capable

of producing both ducts and hepatocytes (Fausto, 2004; Duncan

et al., 2009; Huch et al., 2013; Miyajima et al., 2014). Recent

work, however, has challenged this traditional view and shown

that biliary progenitors are inefficient at producing hepatocytes

in vivo and do not contribute significantly to the restoration of

hepatocyte mass during chronic damage (Tarlow et al., 2014;

Yanger et al., 2014). Our data herein provide an alternativemodel

explaining the existence of bipotential oval cells in chronic he-

patic injury. We show that the conversion of mature hepatocytes

into biliary-like progenitor cells is a reversible process. These he-

patocyte-derived proliferative ducts display the properties previ-

ously ascribed to classic oval cells. They proliferate as ducts in

the periportal region of the hepatic lobule and can also produce

hepatocyte progeny. Our serial transplantation experiments

indicate that hepatocyte-derived progenitors give rise to hepato-

cytes at an efficiency much higher (>60%) than that of clono-

genic progenitors derived from biliary system (<1%) (Huch

et al., 2013).

Our data confirm that mature hepatocytes possess significant

phenotypic plasticity and reinforce previous studies (Michalo-

poulos et al., 2005; Yanger et al., 2013; Yimlamai et al., 2014).

Our observations that hepPDs are distinct from bilPDs based

on genome-wide expression profiling, electron microscopy,

and functional characterization provide a more complete under-

standing of their unique properties. Interestingly, quantitative

RNA-sequencing indicated that hepatocyte-derived progenitor

cells express levels of Krt19 119-fold higher than those of hepa-

tocytes, but levels 15-fold lower than those of bile ducts. This in-

termediate level of expression could be interpreted as either

KRT19� (Malato et al., 2011) or KRT19+ (Sekiya and Suzuki,

Figure 7. Human Hepatocytes Are Directly Converted into Biliary-like Cells In Vivo

(A) Human hepatocytes were transplanted into FRG mice. After 16–24 weeks of repopulation, animals were fed 0.1% DDC for 4–8 weeks.

(B) After injury, human EpCAM+ FAHlow cells with ductal morphology emerged.

(C) KRT19 qRT-PCR assay on whole liver specifically amplified human KRT19. Out of six DDC-treated chimeric mice, three had robust KRT19 induction.

(D) KRT19 levels relative to human LMNA were only 9- to 285-fold lower (n = 3) than human liver reference samples (n = 2).

(E) RNA sequencing of whole chimeric livers effectively separated human (blue) from mouse (red) transcripts, graphed as unique transcript-mapped reads per

position across each UCSC gene model (three examples shown). The FAH transcript in chimeric livers shows expected truncation of mouse FahDexon5 and

nonsense-mediated decay but full-length human FAH.

(F) Human mRNA levels of ductal progenitor genes were quantified relative to housekeeping gene LMNA in normal human liver (n = 1), chimeric livers (n = 6), and

DDC-injured chimeric livers (n = 3) (mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001).
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2014; Yanger et al., 2013) depending on the technical parame-

ters of the immunohistochemistry assay. Our results therefore

resolve an apparent contradiction between these previous

reports.

Despite the equal expression of bile duct markers (i.e., MIC1-

1C3, Sox9, Hnf1b, etc.) and similar morphology by light micro-

scopy, hepPDs and bilPDs were derived from different lineages

and were functionally distinct. For these reasons, we propose

that the general term ‘‘metaplasia’’ is more appropriate than

transdifferentiation to describe the plasticity of hepatocytes in

liver injurymodels. Transdifferentiation is a specific type ofmeta-

plasia where a cell irreversibly switches from one differentiated

cell type into another fully differentiated cell type (Slack, 2009).

It appears unlikely that there would be a physiologic requirement

for hepatocyte-to-duct transdifferentiation in oval cell injury. The

proliferation of host ducts is robust in DDC-induced oval cell

injury, and all ductal proliferation is of nonhepatocyte origin for

the first 2 weeks. Hepatocytes are not needed as a source of

new ducts. On the other hand, severe hepatocellular injury has

been associated with metaplasia toward numerous endodermal

lineages, including intestinal crypts (complete with goblet and

neuroendocrine cells) (Alison et al., 1996; Elmore and Sirica,

1992) or pancreatic acinar-like cells (Kuo et al., 2009). Addition-

ally, chronic injury-associated metaplasia is widely reported to

occur in endoderm-derived epithelial cell types in other organs

(Slack, 2009).

We also demonstrated that human hepatocytes possessed

similar phenotypic plasticity in vivo following liver injury. While

classic lineage tracing is not possible in human patients, our

study provides the first evidence that normal human hepatocytes

can induce ductal progenitor genes during chronic injury in vivo.

This suggests that hepatocyte metaplasia may also occur in hu-

man cirrhosis and that hepatocytes may be a source of ductular

reactions in long-term injury. Our data set provides a specific

gene-expression signature of both human and mouse hepato-

cyte-derived progenitors that may serve as a resource for future

investigations (Supplemental Information). We hypothesize that

hepatocyte-derived human progenitors would express EMT-

associated genes, express intermediate levels of KRT19, and

exhibit unique characteristics in functional assays.

Hepatocytes were until recently considered a terminally differ-

entiated cell that could replicate in acute hepatectomy but not

chronic injuries (Miyajima et al., 2014). More broadly, the

concept of terminal differentiation of mature cell types has

been challenged by numerous demonstrations that cells can

change their phenotype during both development and adulthood

(Sánchez Alvarado and Yamanaka, 2014). Cellular plasticity

induced by the EMT program has been found to generate cells

that exhibit stem-like properties, particularly in tissue repair,

chronic inflammation, and neoplasia (Kalluri and Weinberg,

2009). The acquisition of mesenchymal features is associated

with increased migration, resistance to apoptosis, degradation

of the basement membrane, increased production of extracel-

lular matrix, and expression of stem/progenitor markers—all of

which are associated with oval cell activation in chronic liver

injury. In our study, the conversion of mature hepatocytes into

biliary-like progenitors is marked by induction of mesenchymal

markers Vim, Zeb1, and Cdh2 as well as stem/progenitor

markers like Sox9, c-kit, Tnfrsf12a (also called Fn14), and

Cd44. Various signaling pathways activate and maintain the

EMT program, including theWnt/b-catenin and TGF-b pathways

(Kalluri and Weinberg, 2009). Our gene set analysis identified

Wnt and TGF-b family signaling in addition to Notch (Jeliazkova

et al., 2013) and hedgehog (Michelotti et al., 2013) signaling

associated with hepatocyte-to-progenitor conversion. These

data suggest that multiple signaling events are responsible for

the direct conversion of mature hepatocytes to progenitor cells

and are consistent with an EMT-like process. Although genetic

experiments have clearly shown a role for the Hippo signaling

pathway in maintenance of the hepatocyte phenotype (Yimlamai

et al., 2014), its significance in oval cell injury-inducedmetaplasia

remains uncertain. Further mechanistic studies in well-defined

conditions are needed to understandmolecular mechanisms un-

derlying the expression of mesenchymal genes.

Hepatocyte-ductal metaplasia observed here follows the

same pattern of EMT where transitioning cells later revert to their

original state through MET (Tam and Weinberg, 2013). In fact,

fetal liver stem cells downregulate vimentin and other mesen-

chymal markers as they differentiate into parenchymal epithelial

cells (Li et al., 2011). Similarly, oval cells in the classic 2-AAF/par-

tial hepatectomy model reversibly induce mesenchymal

markers, including Vimentin and Bmp7 (Alison et al., 1996; Yov-

chev et al., 2008).

It is not currently knownwhether ductal metaplasia is an adap-

tive or maladaptive process. We hypothesize that hepatocyte-

ductal metaplasia is an injury evasion strategy that is facilitated

by bile duct proliferation. Metaplasia provides a mechanism to

shut down the hepatocyte-gene expression program in order

to avoid insults that are specifically toxic to hepatocytes but

harm few other cell types (i.e., hepatitis virus, Cyp450-activated

toxins, etc.). This permits individual cells to improve their fitness.

In our decoy metaplasia model (see Graphical Abstract), the

hepPD pool expands in the presence of a regenerative stimulus.

If the injury is transient and eventually regresses, these hepPDs

can revert back to their original fate: a mature hepatocyte.

Improving the efficiency of progenitor-to-hepatocyte rever-

sion with pharmacologic agents may represent a future strategy

to improve hepatic function and outcomes in decompensated

liver failure. Additionally, the propagation of hepatocyte-derived

progenitor cells in vitro may provide an opportunity for autolo-

gous cell therapy in regenerative medicine applications. We

speculate that a better understanding of the epigenetic mecha-

nisms of decoy metaplasia in injury models may provide an op-

portunity for targeted therapies to provide a bridge to liver

transplantation.

EXPERIMENTAL PROCEDURES

Full details are provided in the Supplemental Experimental Procedures.

Mouse Strains, Chimera Generation, and Diet

Sox9-CreERT2 (gift from Dr. Maike Sander), Fah�/�, and ROSA-mTomato/

mGFP (ROSA-mTmG) reporter mice were maintained on a C57BL/6 back-

ground. To generate chimeras, donor Fah+/+ hepatocytes were gravity purified

(33 1min3 503 g), and 43 105 liver hepatocyteswere injected into the spleen

of Fah�/� mice as previously described (Tarlow et al., 2014). Fah�/� animals

were weaned from NTBC on the day of cell transplantation and maintained

on water thereafter. Liver injury was induced by feeding 0.1% DDC (3,5-dieth-

oxycarbonyl-1,4-dihydrocollidine, TCI America) in Purina 5015 chow
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(TD.120495, Harlan Tekland). To isolate ductal cells from DDC-treated livers,

postperfusion digestion was performed with Collagenase II and TrypLE (Dorrell

et al., 2011). Cells that did not pellet after 23 1 min3 50 g were considered the

nonparenchymal fraction and used for FACS and serial transplantation experi-

ments. Tamoxifen was resuspended in sesame oil (30 mg/ml) and given by

intraperitoneal injection to Sox9-CreERT2 ROSA-mTmG chimeric mice.

Modifications for serial transplantation experiments included enrichment of

nonparenchymal cells by gravity centrifugation (23 1 min3 50 g, nonpelleting

cells). Recipient mice were given adenoviral urokinase-plasminogen activator

(Ad-uPA) (5 3 107 pfu/g body weight) to improve trapping of small diameter

donor cells. Virus was given 48 hr prior to cell transplantation by retroorbital

or tail vein injection under isofluorane anesthesia. Animals were cycled back

on NTBC once during a 5-week selection period.

Cryopreserved human hepatocytes (Life Technologies) were thawed and

washed. The hepatoyctes were centrifuged at 1003 g for 5 min at 4�C and re-

constituted at 106 cells/ml. A total of 4 3 105 live cells were injected to the

spleen of recipient Fah�/� Rag2�/� Il2rg�/� (FRG-NOD) mice (Yecuris). FRG-

NOD mice received Ad-uPA 48 hr prior to transplantation. Posttransplant, a

standard NTBC cycling protocol was followed to promote human hepatocyte

selection. Sulfamethoxazole-trimethoprim was included in the drinking water

in a subset of animals as an antimicrobial prophylactic. All procedures and pro-

tocols with vertebrate animals were approved by the OHSU IACUC.

FACS Analysis

Liver NPCswere isolated by amultistep collagenase (type IV, type D) perfusion

and labeled with antibodies as previously described (Dorrell et al., 2011). Cells

were sorted on an inFlux cytometer (BD Biosciences) equipped with 405, 488,

561, and 640 nm excitation lasers. Double positive events were visually in-

spected to exclude the possibility of two cells stuck together.

Cell Culture

Crude nonparenchymal cell fractions were enriched by gravity or FACS. A total

of 500–20,000 cells were seeded into 60 ml matrigel droplets. Growth media

included B27 supplement, N2 supplement, Wnt3a, Egf, Hgf, and Rspo1-Fc;

differentiation media included dexamethasone and OSM as previously

described (Huch et al., 2013).

Gene Expression Analysis

FACS-purified mouse cells were lysed in Trizol (Life Technologies) and treated

with chloroform. Whole human-mouse chimeric livers were directly homoge-

nized without cell fractionation. The aqueous layer was precipitated with

ethanol and applied to silica columns for purification and DNase digestion

(QIAGEN RNAeasy Mini or Micro). The organic layer was saved for later DNA

isolation. Samples meeting quality control thresholds (>20,000 cells, RNA

integrity RIN > 8.5, total RNA > 75ng) were prepared into barcoded libraries

with the Truseq RNA Sample Prep Kit v2 according to the manufacturer’s in-

structions (Illumina). Samples were sequenced on a HiSeq 2000 (3–4 samples

per lane, single end 50 bp reads) to yield an average of 33.1 million exon-map-

ped tags per FACS-purified sample.

Immunohistochemistry and Microscopy

For transmission electron microscopy, 5 3 104 FACS-purified cells were pel-

leted and fixed in 3% gluteraldehyde at room temperature immediately after

isolation. Cell pellets were osmicated, dehydrated, and embedded in araldite

resin. Thin sections were stained with uranyl acetate and lead citrate. Then

cells were processed with high-pressure freezing and imaged. FACS-isolated

cells were fixed for 15 min in 4% paraformaldehyde (PFA) and cytospun onto

charged slides (5 min3 200 g). Cells were subsequently processed for immu-

nohistochemistry or hemotoxylin and eosin staining. Liver tissues were fixed in

4% paraformaldehyde and cryopreserved in 30% sucrose prior to freezing in

OCT tissue blocks. When possible, tissues were fixed with PFA perfusion into

the portal vein. Otherwise, resected tissues were submerged directly in PFA

and fixed for >4 hr. See Supplemental Experimental Procedures for antibody

information and immunohistochemistry.

Image Analysis

Images were quantified and analyzed using ImageJ software (http://www.fiji.

sc). For serial transplantation experiments, fluorescent images were

captured immediately before transplantation on a hemocytometer. For anal-

ysis of engrafted livers, nodule diameter was measured in tiled sections. To

correct for differential probability of identifying large spherical nodules in 2D

sections, a correction factor was applied as previously described (Wang

et al., 2002).
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Español-Suñer, R., Carpentier, R., Van Hul, N., Legry, V., Achouri, Y., Cordi, S.,

Jacquemin, P., Lemaigre, F.P., and Leclercq, I.A. (2012). Liver progenitor cells

yield functional hepatocytes in response to chronic liver injury in mice.

Gastroenterology 143, 1564, e7.

Evarts, R.P., Nagy, P., Marsden, E., and Thorgeirsson, S.S. (1987). A precur-

sor-product relationship exists between oval cells and hepatocytes in rat liver.

Carcinogenesis 8, 1737–1740.

Fan, B., Malato, Y., Calvisi, D.F., Naqvi, S., Razumilava, N., Ribback, S., Gores,

G.J., Dombrowski, F., Evert, M., Chen, X., and Willenbring, H. (2012).

Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin.

Invest. 122, 2911–2915.

Farber, E. (1956). Similarities in the sequence of early histological changes

induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 30-
methyl-4-dimethylaminoazobenzene. Cancer Res. 16, 142–148.

Fausto, N. (2004). Liver regeneration and repair: hepatocytes, progenitor cells,

and stem cells. Hepatology 39, 1477–1487.

Fujio, K., Evarts, R.P., Hu, Z., Marsden, E.R., and Thorgeirsson, S.S. (1994).

Expression of stem cell factor and its receptor, c-kit, during liver regeneration

from putative stem cells in adult rat. Lab. Invest. 70, 511–516.

Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S.,

Kuhara, T., Hosokawa, S., Elbahrawy, A., Soeda, T., Koizumi, M., et al.

(2011). Continuous cell supply from a Sox9-expressing progenitor zone in

adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41.

Gleiberman, A.S., Encinas, J.M., Mignone, J.L., Michurina, T., Rosenfeld,

M.G., and Enikolopov, G. (2005). Expression of nestin-green fluorescent pro-

tein transgene marks oval cells in the adult liver. Dev. Dyn. 234, 413–421.

Huch, M., Dorrell, C., Boj, S.F., van Es, J.H., Li, V.S.W., van de Wetering, M.,

Sato, T., Hamer, K., Sasaki, N., Finegold, M.J., et al. (2013). In vitro expansion

of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature

494, 247–250.
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Premont, R., Yang, L., Syn, W.-K., Metzger, D., and Diehl, A.M. (2013).

Smoothened is a master regulator of adult liver repair. J. Clin. Invest. 123,

2380–2394.

Miyajima, A., Tanaka, M., and Itoh, T. (2014). Stem/progenitor cells in liver

development, homeostasis, regeneration, and reprogramming. Cell Stem

Cell 14, 561–574.

Mosnier, J.-F., Kandel, C., Cazals-Hatem, D., Bou-Hanna, C., Gournay, J.,

Jarry, A., and Laboisse, C.L. (2009). N-cadherin serves as diagnostic

biomarker in intrahepatic and perihilar cholangiocarcinomas. Mod. Pathol.

22, 182–190.

Overturf, K., Al-Dhalimy, M., Tanguay, R., Brantly, M., Ou, C.N., Finegold, M.,

and Grompe, M. (1996). Hepatocytes corrected by gene therapy are selected

in vivo in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 12,

266–273.

Overturf, K., al-Dhalimy, M., Ou, C.N., Finegold, M., and Grompe, M. (1997).

Serial transplantation reveals the stem-cell-like regenerative potential of adult

mouse hepatocytes. Am. J. Pathol. 151, 1273–1280.

Overturf, K., Al-Dhalimy, M., Finegold, M., and Grompe, M. (1999). The repo-

pulation potential of hepatocyte populations differing in size and prior mitotic

expansion. Am. J. Pathol. 155, 2135–2143.

Preisegger, K.H., Factor, V.M., Fuchsbichler, A., Stumptner, C., Denk, H., and

Thorgeirsson, S.S. (1999). Atypical ductular proliferation and its inhibition by

transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocol-

lidine mouse model for chronic alcoholic liver disease. Lab. Invest. 79,

103–109.
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