344 research outputs found

    A new synthesis approach for non-uniform filters in the log-scale: proof of concept

    Get PDF
    International audienceWe theoretically describe and give the proof of a new way to synthesize filters that are affine in the log–log scale in the frequency domain and are especially appropriate to filter non-uniformly sampled data, and take advantage of a very low number of signal samples and filter coefficients. This approach leads to a summation formula which plays the same role as the discrete convolution for the usual finite impulse response filters

    Self-timed rings as low-phase noise programmable oscillators

    No full text
    International audienceSelf-timed rings are promising for designing highspeed serial links and system clock generators. Indeed, their architecture is well-suited to digitally control their frequency and to easily adapt their phase noise by design. Self-timed ring oscillation frequency does not only depend on the number of stages as the usual inverter ring oscillators but also on their initial state. This feature is extremely important to make them programmable. Moreover, with such ring oscillators, it is easy to control the phase noise by design. Indeed, 3dB phase noise reduction is obtained at the cost of higher power consumption when the number of stages is doubled while keeping the same oscillation frequency, thanks to the oscillator programmability. In this paper, we completely describe the method to design selftimed rings in order to make them programmable and to generate a phase noise in accordance with the specifications. Test chips have been designed and fabricated in AMS 0.35 μm and in STMicroelectonics CMOS 65 nm technology to verify our models and theoretical claims

    Comparison of Self-Timed Ring and Inverter Ring Oscillators as Entropy Sources in FPGAs

    No full text
    International audienceMany True Random Numbers Generators (TRNG) use jittery clocks generated in ring oscillators as a source of entropy. This is especially the case in Field Programmable Gate Arrays (FPGA), where sources of randomness are very limited. Inverter Ring Oscillators (IRO) are relatively well characterized as entropy sources. However, it is known that they are very sensitive to working conditions. This fact makes them vulnerable to attacks. On the other hand, Self-Timed Rings (STR) are currently considered as a promising solution to generate robust clock signals. Although many studies deal with their temporal behavior and robustness in Application Specific Integrated Circuits (ASIC), equivalent study does not exist for FPGAs. Furthermore, these oscillators were not analyzed and characterized as entropy sources aimed at TRNG design. In this paper, we analyze STRs as entropy sources for TRNGs implemented in FPGAs. Next, we compare STRs and IROs when serving as sources of randomness. We show that STRs represent very interesting alternative to IROs: they are more robust to environmental fluctuations and they exhibit lower extra-device frequency variations

    A Self-timed Ring Based True Random Number Generator

    No full text
    International audienceSelf-timed rings are oscillators in which several events can evolve evenly-spaced in time thanks to analog effects inherent to the ring stage structure. One of their interesting features is that they provide precise high-speed multiphase signals. This paper presents a true random number generator that exploits the jitter of events propagating in a self-timed ring with a high entropy. Designs implemented in Altera Cyclone III and Xilinx Virtex 5 devices provide high quality random bit sequences passing FIPS 140-1 and NIST SP 800-22 statistical tests at a high bit rate

    A Very High Speed True Random Number Generator with Entropy Assessment

    No full text
    International audienceThe proposed true random number generator (TRNG) exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit sequences at a very high bit rate. It takes advantage of a special feature of STRs that allows the time elapsed between successive events to be set as short as needed, even in the order of picoseconds. If the time interval between the events is set in concordance with the clock jitter magnitude, a simple entropy extraction scheme can be applied to generate random numbers. The proposed STR-based TRNG (STRNG) follows AIS31 recommendations: by using the proposed stochastic model, designers can compute a lower entropy bound as a function of the STR characteristics (number of stages, oscillation period and jitter magnitude). Using the resulting entropy assessment, they can then set the compression rate in the arithmetic post-processing block to reach the required security level determined by the entropy per output bit. Implementation of the generator in two FPGA families confirmed its feasibility in digital technologies and also confirmed it can provide high quality random bit sequences that pass the statistical tests required by AIS31 at rates as high as 200 Mbit/s

    A dynamical approach to generate chaos in a micromechanical resonator

    Full text link
    Chaotic systems, presenting complex and non-reproducible dynamics, may be found in nature from the interaction between planets to the evolution of the weather, but can also be tailored using current technologies for advanced signal processing. However, the realization of chaotic signal generators remains challenging, due to the involved dynamics of the underlying physics. In this paper, we experimentally and numerically present a disruptive approach to generate a chaotic signal from a micromechanical resonator. This technique overcomes the long-established complexity of controlling the buckling in micro/nano-mechanical structures by modulating either the amplitude or the frequency of the driving force applied to the resonator in the nonlinear regime. The experimental characteristic parameters of the chaotic regime, namely the Poincar\'e sections and Lyapunov exponents, are directly comparable to simulations for different configurations. These results confirm that this dynamical approach is transposable to any kind of micro/nano-mechanical resonators, from accelerometers to microphones. We demonstrate a direct application exploiting the mixing properties of the chaotic regime by transforming an off-the-shelf microdiaphragm into a true random number generator conformed to the National Institute of Standards and Technology specifications. The versatility of this original method opens new paths to combine chaos' unique properties with microstructures' exceptional sensitivity leading to emergent microsystems

    Self-Timed Rings: A Promising Solution for Generating High-Speed High Resolution Low-Phase Noise Clocks

    Get PDF
    International audienceA high-speed multi-phase oscillator based on self-timed ring is proposed. Self-timed rings (STR) are promising approach for designing high-speed serial links and clock generators. Indeed, the architecture of STR allows us to achieve high frequencies with multiphase outputs and their oscillation frequency is not only depending on the number of stages but also on the initial state of the ring. Moreover, this architecture allows us 3 dB phase noise reduction when, while keeping the same frequency, when the stage number is doubled. In this chapter, we propose a method to design STR able to generate high-speed multi-phase outputs and we suggest a design flow for designing low-phase noise self-timed ring oscillators. A test chip has been designed and fabricated in STMicroelectonics CMOS65nm technology to verify the theoretical claims and validate the simulation results

    Innovation for Education on Internet of Things

    Get PDF
    The Internet of Things (IoT) and related objects are becoming more prevalent around the world with exponential growth for the next fifteen years. This evolution implies innovation in many fields of technology, whose core is in microelectronics. Indeed, IoT deals with all societal applications such as health, the environment, transport, energy and communications. Thus, connected objects involve many technological components: sensors and actuators, signal processing circuits, data transmission circuits and systems, energy recovery systems, which directly depend on the performance of microelectronics. To create new connected objects, innovation is the main driver. Innovation results from the combination of a multidisciplinary approach, links between disciplines and the necessary know-how of engineers and technicians. This paper deals with the orientation of pedagogy towards these objectives through the development of dedicated and innovative platforms in microelectronics. These platforms are developed by the French National Microelectronics Education Network (CNFM). After presenting the context of IoT and the evolution of microelectronics technologies, this article highlights the main components of connected objects applied to many societal applications. Each component of the objects requires specific microelectronic devices or circuits. Innovation appears in the nature of platforms, the multidisciplinary approach of training, the permanent links between disciplines, and the adaptation to new educational tools, mainly online. The results of the training on innovative platforms are presented and discussed

    Méthode de modélisation et de raffinement pour les systèmes hétérogènes. Illustration avec le langage System C-AMS

    Get PDF
    Les systèmes sur puces intègrent aujourd hui sur le même substrat des parties analogiques et des unités de traitement numérique. Tandis que la complexité de ces systèmes s accroissait, leur temps de mise sur le marché se réduisait. Une conception descendante globale et coordonnée du système est devenue indispensable de façon à tenir compte des interactions entre les parties analogiques et les partis numériques dès le début du développement. Dans le but de répondre à ce besoin, cette thèse expose un processus de raffinement progressif et méthodique des parties analogiques, comparable à ce qui existe pour le raffinement des parties numériques. L'attention a été plus particulièrement portée sur la définition des niveaux analogiques les plus abstraits et à la mise en correspondance des niveaux d abstraction entre parties analogiques et numériques. La cohérence du raffinement analogique exige de détecter le niveau d abstraction à partir duquel l utilisation d un modèle trop idéalisé conduit à des comportements irréalistes et par conséquent d identifier l étape du raffinement à partir de laquelle les limitations et les non linéarités aux conséquences les plus fortes sur le comportement doivent être introduites. Cette étape peut être d un niveau d'abstraction élevé. Le choix du style de modélisation le mieux adapté à chaque niveau d'abstraction est crucial pour atteindre le meilleur compromis entre vitesse de simulation et précision. Les styles de modélisations possibles à chaque niveau ont été examinés de façon à évaluer leur impact sur la simulation. Les différents modèles de calcul de SystemC-AMS ont été catégorisés dans cet objectif. Les temps de simulation obtenus avec SystemC-AMS ont été comparés avec Matlab Simulink. L'interface entre les modèles issus de l'exploration d'architecture, encore assez abstraits, et les modèles plus fin requis pour l'implémentation, est une question qui reste entière. Une bibliothèque de composants électroniques complexes décrits en SystemC-AMS avec le modèle de calcul le plus précis (modélisation ELN) pourrait être une voie pour réussir une telle interface. Afin d illustrer ce que pourrait être un élément d une telle bibliothèque et ainsi démontrer la faisabilité du concept, un modèle d'amplificateur opérationnel a été élaboré de façon à être suffisamment détaillé pour prendre en compte la saturation de la tension de sortie et la vitesse de balayage finie, tout en gardant un niveau d'abstraction suffisamment élevé pour rester indépendant de toute hypothèse sur la structure interne de l'amplificateur ou la technologie à employer.Systems on Chip (SoC) embed in the same chip analogue parts and digital processing units. While their complexity is ever increasing, their time to market is becoming shorter. A global and coordinated top-down design approach of the whole system is becoming crucial in order to take into account the interactions between the analogue and digital parts since the beginning of the development. This thesis presents a systematic and gradual refinement process for the analogue parts comparable to what exists for the digital parts. A special attention has been paid to the definition of the highest abstracted analogue levels and to the correspondence between the analogue and the digital abstraction levels. The analogue refinement consistency requires to detect the abstraction level where a too idealised model leads to unrealistic behaviours. Then the refinement step consist in introducing for instance the limitations and non-linearities that have a strong impact on the behaviour. Such a step can be done at a relatively high level of abstraction. Correctly choosing a modelling style, that suits well an abstraction level, is crucial to obtain the best trade-off between the simulation speed and the accuracy. The modelling styles at each abstraction level have been examined to understand their impact on the simulation. The SystemC-AMS models of computation have been classified for this purpose. The SystemC-AMS simulation times have been compared to that obtained with Matlab Simulink. The interface between models arisen from the architectural exploration still rather abstracted and the more detailed models that are required for the implementation, is still an open question. A library of complex electronic components described with the most accurate model of computation of SystemC-AMS (ELN modelling) could be a way to achieve such an interface. In order to show what should be an element of such a library, and thus prove the concept, a model of an operational amplifier has been elaborated. It is enough detailed to take into account the output voltage saturation and the finite slew rate of the amplifier. Nevertheless, it remains sufficiently abstracted to stay independent from any architectural or technological assumption.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    • …
    corecore