
HAL Id: hal-02157365
https://hal.archives-ouvertes.fr/hal-02157365

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new synthesis approach for non-uniform filters in the
log-scale: proof of concept

Brigitte Bidégaray-Fesquet, Laurent Fesquet

To cite this version:
Brigitte Bidégaray-Fesquet, Laurent Fesquet. A new synthesis approach for non-uniform filters in the
log-scale: proof of concept. 5th International Conference on Event-Based Control, Communication,
and Signal Processing, May 2019, Vienna, Austria. pp.1-7, �10.1109/EBCCSP.2019.8836919�. �hal-
02157365�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/213347589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02157365
https://hal.archives-ouvertes.fr

A new synthesis approach for non-uniform filters in the log-scale: proof of concept

Brigitte Bidegaray-Fesquet∗ and Laurent Fesquet†
∗Univ. Grenoble Alpes, CNRS, Grenoble INP‡, LJK, 38000 Grenoble, France

Email: Brigitte.Bidegaray@univ-grenoble-alpes.fr
†Univ. Grenoble Alpes, CNRS, Grenoble INP‡, TIMA, 38000 Grenoble, France

Email: Laurent.Fesquet@univ-grenoble-alpes.fr
‡ Institute of Engineering Univ. Grenoble Alpes

Abstract—We theoretically describe and give the proof of a new
way to synthesize filters that are affine in the log–log scale in
the frequency domain and are especially appropriate to filter
non-uniformly sampled data, and take advantage of a very low
number of signal samples and filter coefficients. This approach
leads to a summation formula which plays the same role as the
discrete convolution for the usual finite impulse response filters.

Keywords–Non-uniform sampling, filtering, log-scale.

I. INTRODUCTION

As the energy is becoming a major issue for most of
the autonomous electronic systems powered by batteries or
energy harvesters, such as smart sensors and many IoT devices,
finding signal processing techniques able to reduce the com-
putational load is crucial. The aim of this work is to provide a
new method for synthesizing filters able to drastically reduce
the filter coefficient numbers compared to classical filters.
Moreover, the approach is coupled to a level-crossing sampling
scheme known to spare the signal samples. This two techniques
are able to strongly decrease the filter computational load and
make this approach relevant for autonomous electronic devices.

For a large class of signals, especially sporadic signals,
non-uniform sampling leads to a reduced number of samples,
compared to a Nyquist sampling. To have the lowest possible
number of samples is an important issue to reduce the power
consumption of mobile systems, thus allowing to increase their
autonomy and/or reduce their size and weight [1]–[4]. This
goal can be achieved combining specific system architectures
(e.g. event-driven) and associated specific signal processing
theory [5], [6].

Algorithms to filter non-uniformly sampled signals have
already been investigated [7]. A first natural approach is to
use classical (uniform) filters, and the usual discretization in
time of their impulse response. This leads to non-uniform finite
impulse response filtering techniques based on interpolation [8]
and infinite impulse response filtering in the state representa-
tion, using specific schemes for solving ordinary differential
equations [9].

Since the impulse response is highly oscillatory, a further
work investigates a way to use the frequency response and
interpolate it in the frequency domain [10]. In this paper, clas-
sical filters (Chebyshev and Butterworth) are used to illustrate
the algorithms. The filters are non-uniformly sampled in the
time domain using a level crossing scheme to select samples.
They are then linearly interpolated, and different ways to do
this interpolation are discussed.

We want to go here further in this direction. Instead of
interpolating existing filters, we want to define new ones

that are explicitly designed to achieve high-order with a
very limited number of samples to describe their frequency
responses. In Section II, we define how the non-uniform signal
is described and how we define a non-uniform filter in the
frequency domain. In Section III we give the notations used
to define the associated numerical filter and give the main
result of the paper, i.e. the filtering formula, which is proved
rigorously in Section IV. Section V is devoted to two examples,
a toy one namely a frequency-sweep signal and a real one with
an ECG signal.

II. SIGNAL AND FILTER REPRESENTATION

We consider an analog signal s(t) in the time domain and
an analog filter frequency response H(ω) in the frequency
domain. For these continuous functions the result of the
filtering process, x(t), is the convolution of s(t) with the
impulse response h(t)

x(t) =

∫ +∞

−∞
h(t− τ)s(τ) dτ, (1)

and h is the inverse Fourier transform of H:

h(t) =
1

2π

∫ +∞

−∞
H(ω)eiωt dω. (2)

Both the analog signal and the filter frequency response are
sampled non-uniformly, and the first result we will have to
make explicit Eq. (1) in terms of the samples.

A. Non-uniform signal description

A non-uniformly sampled signal consists of a series of
N samples (sn, tn)n=1,...,N . In this representation, sn is the
amplitude of the nth sample and tn is the timestamp of the
sample.

The signal s(t) is approximated by a linear interpolation
of the non-uniform samples. Different ways to proceed are
described in [10]. In all cases, the approximated input signal
s̄(t) is an affine function on the time interval [tn−1, tn] given
by s̄(t) = an + bnt, where an and bn are easily computed
from the samples.

We address applications where a level crossing scheme is
used to capture the samples [11] and where only time delays
δtn = tn − tn−1 between two samples are captured thanks
to a local clock. All these features have no impact on the
description of the filtering algorithm. We do not use here the
fact than levels are quantized, and it is easy to pass from the
δtn to the tn.

B. Non-uniform filter description
We only consider here symmetric filters with respect to

the zero frequency. A filter is described by K non-uniformly
distributed samples (Hk, ωk)k=0,...,K which only yields the
positive part of the filter frequency response. The negative part
can be deduced since a symmetric filter has even amplitude and
odd phase.

1) Filter interpolation: In [10] classical filters such as
Chebyshev or Butterworth filters are considered. Their filter
frequency response is sampled (in the frequency domain)
using properly placed thresholds and a linear interpolation is
proposed. Since the amplitudes of the samples of the filter
frequency response are complex numbers, there are many ways
to linearly interpolate. A simple solution is to interpolate in the
complex plane

H(ω) = aωk + bωkω for ω ∈ [ωk−1, ωk],

where aωk and bωk are complex numbers, but this leads to too
much attenuation between samples.
The best way, discussed in [10], is to interpolate the modulus
and the phase separately, leading to a more complex descrip-
tion

H(ω) = (aρk + bρkω) exp(i(aθk + bθkω)) for ω ∈ [ωk−1, ωk],

where now all the coefficients, aρk, bρk, aθk, and bθk are real
numbers.

If the thresholds are well chosen, we can describe in this
way very precisely already existing filters with a low number
of samples, namely lower than the order of the filter. However
these classical filters have been designed to be used with
classical uniform signals and coefficients in the time domain.
They may not be the best suited for non uniform signals. The
use of new signal paradigms is therefore associated to the use
of specific adapted filters.

Very often filter frequency responses are represented in
the log–log scale and in this description show almost affine
features in some parts. We shall use this to describe and design
new filters.

2) Filter description: the log–log scale: To use the log-log
scale, we define the logarithm of the filter frequency response
L(ω) = ln(H(ω)) and suppose it is piecewise affine on the
intervals [ln(ωk−1), ln(ωk)]:

L(ω) = λ0
k + λ1

k ln(ω)

where

λ1
k =

ln(Hk)− ln(Hk−1)

ln(ωk)− ln(ωk−1)
and λ0

k = ln(Hk)− λ1
k ln(ωk).

Coming back to the original frequency space, for all ω ∈
[ωk−1, ωk], we have

H(ω) = exp(L(ω)) = exp(λ0
k + λ1

k ln(ω)) = exp(λ0
k)ωλ

1
k

= Hkω
−λ1

k

k ωλ
1
k = Hk

(
ω

ωk

)λ1
k

. (3)

Here λ0
k and λ1

k are supposed to be real numbers. The
subsequent filter will therefore be necessarily be non-causal.
Two more conditions on the coefficients have to be fulfilled to
make our approach tractable:

• λ1
1 = 0. In the log scale, the zero frequency is

pushed toward −∞, the first interval [−∞, ln(ω1)] is
therefore infinite, and a constant is the only possible
linear interpolation on such an interval.

• −λ1
k ∈ N. The reason for this will be clear in the

following computation, in order to be able to give an
explicit formulation of the integrals.

The interpolation of any pre-existing filter is therefore not
possible as in [10] and we therefore have to build specific
filters to apply our approach. The scheme of such a filter with
two samples is given in Figure 1.

0
ln(ω)

ln(H) ln(ω1) ln(ω2)

−∞

0
ω

H

1

ω1 ω2

Figure 1. Example of a simple two-sample affine filter in the log-log scale
(above) and the usual frequency domain (below).

The filter can be compared for example with a Butterworth
filter, and this will be done in the numerical examples. We
show an example on Fig. 2. In this example we have used a
10-order Butterworth filter with the same cut-off frequency. On
the right plot we see that there are differences at the vicinity
of the cut-off frequency, since our approach allows to exactly
cut, while it is impossible to design with usual filter design
methods. On the left we see the possibility to use different
slopes for the log-log filter and define a second frequency
beyond which the signal is filtered with an order 15. The log-
log filter is described with 3 coefficients, while the 10-order
Butterworth filter uses 10 coefficients.

III. THE LOG–LOG SCALE FILTERING ALGORITHM: MAIN
RESULT

A. Elementary impulse response

In Eq. (2), the impulse response is defined as an integral
over ω ∈ R. We can split this integral into K elementary
impulse responses: h(t) =

∑K
k=1 hk(t) where (recall the filter

H(ω)

frequency frequency

Figure 2. Bode diagramme for the log-log (red) and its ”equivalent” Butterworth filter (blue). General view (left), detail (right).

is symmetric)

hk(t) =
1

2π

{∫ ωk

ωk−1

H(ω)eiωtdω

+

∫ −ωk−1

−ωk

H∗(−ω)eiωt dω

}
.

Using the explicit formula for H(ω) on each subinterval given
by Eq. (3), we easily obtain

hk(t) =
1

2π

∫ ωk

ωk−1

(
ω

ωk

)λ1
k

(Hke
iωt +H∗ke

−iωt) dω.

Since we have supposed until now that Hk are real, we simply
have

hk(t) = αk

∫ ωk

ωk−1

ωλ
1
k cos(ωt) dω where αk =

Hk

πω
λ1
k

k

.

Since we compute integrals, we notice that hk(t) =
αk (gk(t, ωk)− gk(t, ωk−1)), where

gk(t,Ω) =

∫ Ω

ωλ
1
k cos(ωt) dω.

B. Elementary contributions
The output signal x(t) defined by (1) is approximated in

an affine way by

x̄(t) =

N∑
n=1

∫ tn

tn−1

h(t− τ)s̄(τ)dτ

=

N∑
n=1

K∑
k=1

αk(anx
0
nk(t) + bnx

1
nk(t)),

where

x0
nk(t) =

∫ t−tn−1

t−tn
hk(τ) dτ

and

x1
nk(t) =

∫ t−tn−1

t−tn
hk(τ)(t− τ) dτ.

All the elementary contributions have the same form, we
therefore define the following difference operator applied to
functions f : R2 → R

∆n,k(t)f ≡f(t− tn, ωk)− f(t− tn, ωk−1)

− f(t− tn−1, ωk) + f(t− tn−1, ωk−1). (4)

We will say that two functions f and f ′ are equivalent, and
denote f ./ f ′

f ./ f ′ ⇐⇒ ∆n,k(t)f = ∆n,k(t)f ′.

Using this notation we obviously have

x0
nk(t) = ∆n,k(t)f−λ1

k
,

x1
nk(t) = t x0

nk(t)−∆n,k(t)f̊−λ1
k
,

where for any integer m (recall −λ1
k ∈ N) we denote

fm(T,Ω) ≡
∫
T

∫ Ω cos(ωτ)

ωm
dωdτ,

f̊m(T,Ω) ≡
∫
T

∫ Ω cos(ωτ)τ

ωm
dω dτ.

C. Main result
Theorem 1: The approximated output signal can be recon-

structed with

x̄(t) =

N∑
n=1

K∑
k=1

αk

(
anx

0
nk(t) + bnx

1
nk(t)

)
,

where
x0
nk(t) = ∆n,k(t)f−λ1

k

and
x1
nk(t) = t x0

nk(t)−∆n,k(t)f̊−λ1
k
.

In this formula, the coefficients an and bn stem from affine
approximation of the signal and the coefficients αk and λ1

k
from the description of the frequency response. The transform
∆n,k(t) defined by (4) also depend on the signal and filter
description via the values of tn, tn−1, ωk and ωk−1. For integer
values of m = −λ1

k the functions

Fm(T,Ω) ≡ m!Ωmfm(T,Ω),

F̊m(T,Ω) ≡ (m+ 1)!

m
Ωm+1f̊m(T,Ω)

only depend on the product X = ΩT . The functions Fm(T,Ω)
and F̊m(T,Ω) can be reconstructed as the real part of two
functions

F c
m(T,Ω) =(Pm(X)− iQm(X))eiX

+ (iX)m(−Si(X) + iCi(X)),

F̊ c
m(T,Ω) =(P̊m(X)− iQ̊m(X))eiX

+ (iX)m(−Si(X) + iCi(X)),

where Pm, Qm, P̊m, Q̊m are polynomials which can be
computed via induction on the index m:

Pm(x) =x(m− 2)!− x2P(m−2)(x),

P(0)(x) = 0, P(1)(x) = 0,

Qm(x) =(m− 1)!− x2Q(m−2)(x),

Q(0)(x) = 0, Q(1)(x) = 1,

P̊m(x) =(m− 1)! + xPm(x),

P̊(0)(x) = 1, P̊(1)(x) = 1,

Q̊m(x) =xQm(x),

Q̊(0)(x) = 0, Q̊(1)(x) = x.

This theorem yields an efficient algorithm to compute the
approximated output signal x̄(t). See the Appendix for details
on the special functions Si and Ci. The next section is devoted
to the proof of Theorem 1.

IV. DERIVATION OF THE ALGORITHM

To avoid computation duplication we set

f c
m(t,Ω) =

∫
T

∫ Ω

ωmeiωτ dω dτ,

f̊ c
m(t,Ω) =

∫
T

∫ Ω

ωmeiωττ dω dτ

and we will be able to recover fαm and fβm (f̊αm and f̊βm) taking
the real and imaginary part respectively. For m ≥ 1, we first
compute

f c
m(T,Ω) =

∫ Ω ∫
T

eiωt

ωm
dt dω = i

∫ Ω eiωT

ωm+1
dω

= − T
m

∫ Ω eiωT

ωm
dω − i

m

eiΩT

Ωm

= i
T

m
f c
m−1(T,Ω)− i

m

eiΩT

Ωm
,

or in other words

F c
m(T,Ω) = iΩTF c

m−1(T,Ω)− i(m− 1)!eiΩT . (5)

The Ansatz we want to prove reads

F c
m(T,Ω) =(Pm(X)− iQm(X))eiX

+ (iX)m(−Si(X) + iCi(X)), (6)

Plugging (6) in (5), we easily obtain the recurrence relations
Therefore we have

Pm(x) = xQ(m−1)(x) and Qm = (m− 1)!− xP(m−1)(x)

which we can also write

Pm(x) = x(m− 2)!− x2P(m−2)(x),

Qm(x) = (m− 1)!− x2Q(m−2)(x).

The case m = 0 is of course not covered by these computations
and needed to initialize the recurrence:

F c
0 (T,Ω) = f c

0(T,Ω) =

∫ Ω eiωT

ω
dω

= − Si(ΩT)− iCin(ΩT),

P0(x) = 0, Q0(x) = 0.

We proceed the same way for f̊ c
m.

f̊ c
m(T,Ω) =

∫ Ω ∫
T

eiωτ

ωm
τ dτ dω

= i

∫ Ω ∫
T

eiωτ

ωm+1
dτ dω + iT

∫ Ω eiωT

ωm+1
dω

= if c
m+1(T,Ω) + Tf c

m(T,Ω),

or in other words (for m ≥ 1)

F̊ c
m(T,Ω) =

i

m
F c
m+1(T,Ω) +

m+ 1

m
(ΩT)F c

m(T,Ω).

Thanks to (5)

F̊ c
m(T,Ω) = (ΩT)F c

m(T,Ω) + (m− 1)!eiΩT .

Using (6), we immediately obtain that

F̊ c
m(T,Ω) =(P̊m(X)− iQ̊m(X))eiX

+ (iX)m(−Si(X) + iCi(X)), (7)

where

P̊m(x) = (m− 1)! + xPm(x),

Q̊m(x) = xQm(x).

For m = 0, we compute

F̊ c
0 (T,Ω) = Ωf̊ c

0(T,Ω) = iΩf c
1(T,Ω) + (ΩT)f c

0(T,Ω)

= −ieiΩT .

ω1 = ωc λ1
1 ω2 = ωm λ1

2

Filter 1 4π 0 30π -5
Filter 2 4π 0 30π -10

TABLE I. FILTER COEFFICIENTS USED FOR EXPERIMENTS.

0
ln(ω)

ln(H) ln(ωc) ln(ωm)

Figure 3. The two filters in the frequency domain, in the log-scale (top) and
the linear scale (down). Filter 1 is plotted in solid line and Filter 2 in dashed
line.

V. EXPERIMENTS

A. A first example: frequency-sweep input signal
We try two log-log affine filters with only two coefficients

(couples (ωk, Hk) with the same cut-off frequency ωc and sec-
ond frequency interval [ωc, ωm], which implies that H(ω) = 0
for ω > ωm. The two filters only differ in the slope on interval
[ωc, ωm]. The values are gathered in Table I.

The positive part of these filters are plotted on Figure 3,
where the first filter is plotted with a solid line and the second
filter with a dashed line. The second filter is steepest and
would correspond to a higher order filter if classical filters
are considered.

We test the efficiency of the above designed algorithm to
filter a frequency-sweep input signal:

s(t) = 0.9 (cos(2πt2) + 1).

The input signal is plotted with a solid line in Figure 4.

TABLE II. FILTER COEFFICIENTS.

k 1 2 3
ωk ωc 2ωc 7ωc

λ1
k 0 -5 -10

The first step of the algorithm consist in producing non-
uniform samples out of this input signal. We a 3-bit asyn-
chronous ADC [11] with [0; 1.8] range, that performs cross-
level sampling. For our example, this leads to 88 samples,
which are plotted with stars on Figure 4.

The input signal is an academic test case that has been
chosen to see how the filter treats the different frequencies.
This type of signal is not typical of the signals that can benefit
at most of our approach which is dedicated to sporadic signals
that lead to a very few number of non-uniform samples.

The result of the filtering process is also displayed in
Figure 4. The output signal x1(t) using Filter 1 is plotted with
a dashed line. The dotted plot corresponds to x2(t) obtained
using Filter 2. We can see that the signal is correctly filtered.
An important issue is the fact that, although their theoretical
order are different, the complexity of both filters are about
the same since they both use two samples. The filters have
been implemented in the MATLAB toolbox SPASS [12]. In
this framework, the processing time for both filters is exactly
the same.

Figure 4. Input and filtered signals.

B. Filtering a real signal: ECG example
In order to easily retrieve the heart frequency in a heart rate

monitor, it is suitable to first filter the erratic high frequencies.
Therefore we test our algorithm on ECG signals. The result
plotted in Figure 5 is obtained using a 2-coefficient filter with
cut-off frequency ωc = 100 Hz.

The 2-coefficient filter in the log-scale yields similar results
to uniform FIR filter techniques with a larger number of
coefficients. For the comparison we used a 5-order Butterworth
filter.

The second column in Table III displays the number or
samples obtained through the level-crossing scheme when
levels are equally spaced. In this context, the expected number

Figure 5. Input and filtered signals computed at regular times. The 16 level log-log filtered signal is plotted above the corresponding Butterworth filtered signal.

TABLE III. ERROR BETWEEN BUTTERWORTH AND LOG-LOG FILTERS.

nb levels nb samples `∞ error `1 error
4 584 0.2677 0.0901
8 1377 0.2727 0.0436

16 2414 0.2645 0.0276
32 5081 0.2652 0.0219
64 10029 0.2587 0.0222

of samples has been studied in [13] with respect to the Hölder
regularity of the input signal. Here the number of samples is
more or less linear in the number of levels.

The two next columns give the norm of the error between
the ”equivalent” Butterworth filtered signal and the log-log
filtered signal. The norms are normalized with respect to the
amplitude of the input signal and the duration of the signal.
As seen in Section V-A, we do not expect the results to match
exactly, for two main reasons. First the filters are not exactly
the same: 1) the Butterworth filter filters the signal causally
while our is non causal; 2) the filters are quite different in
the vicinity of the cut-off frequency; 3) the data are not the
same since the level-crossing procedure is more or less a first
filtering procedure, that also clips the signal. This last feature
explains in particular that the `∞ error does not really depends
on the number of levels. The `1 error shows that it is nor really
necessary to use a lot of levels to obtain a fair result. For the
application targeted by non-uniform sampling, a 10% error is
very often acceptable. For this application, 8 levels have been
chosen with an evenly-spaced positioning of the levels.

One characteristics of our filter is that the times at which
the filtered result is computed can be any times. In particular,
they are not linked with the input times. We can space them
regularly for easier subsequent treatment even if the input
signal is non uniform. We can also place then irregularly in a
properly, application-targeted way. Here better results can be
using the non-uniform input signal times. The reason is that
we are then sure to capture the peaks. This is displayed on
Fig. 6.

VI. CONCLUSION

We have designed a new class of filters based on a non-
uniform, log-log affine description of the frequency response in
the frequency domain. This allows to reach slopes that would
correspond to high order schemes but with a low number of
filter samples. Each processing step being rather complicated
these filters are dedicated to specific signals, such as sporadic
signals or signals mostly smoothly varying in time, that are also
sampled non-uniformly in the time domain. We only describe
here non-causal filters. Causal filters will be the subject of a
forthcoming paper.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-61 LABX-0025-01).

REFERENCES

[1] J. W. Mark and T. D. Todd, “A nonuniform sampling approach to data
compression,” IEEE Transactions on Communications, vol. 29, no. 1,
Jan. 1981, pp. 24–32.

[2] F. Marvasti, Nonuniform Sampling. Theory and Practice, ser. Infor-
mation Technology: Transmission, Processing and Storage. Kluwer
Academic Publishers, 2001.

[3] K. Guan and A. C. Singer, “Opportunistic sampling by level-crossing,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2007. Honolulu, Hawai’i, USA: IEEE, Apr. 2007,
pp. 1513–1516.

[4] N. Sayiner, H. V. Sorensen, and T. R. Viswanathan, “A level-crossing
sampling scheme for A/D conversion,” IEEE Transactions on Circuits
and Systems II, vol. 43, no. 4, Apr. 1996, pp. 335–339.

[5] F. J. Beutler, “Error-free recovery of signals from irregularly spaced
samples,” SIAM Review, vol. 8, no. 3, Jul. 1966, pp. 328–335.

[6] I. Bilinskis, Digital alias free signal processing. John Wiley and Sons,
2007.

[7] D. Poulton and J. Oksman, “Digital filters for non uniformly sampled
signals,” in Nordic Signal Processing Symposium (NORSIG 2000),
Vildmarkshotellet Kolmarden, Sweden, Jun. 2000, pp. 421–424.

Figure 6. Input and filtered signals computed at sampled input times. The 16 level log-log filtered signal is plotted above the corresponding Butterworth filtered
signal.

[8] F. Aeschlimann, E. Allier, L. Fesquet, and M. Renaudin, “Asynchronous
FIR filters: Towards a new digital processing chain,” in 10th Interna-
tional Symposium on Asynchronous Circuits and Systems (Async’04).
Hersonisos, Crete: IEEE, Apr. 2004, pp. 198–206.

[9] L. Fesquet and B. Bidégaray-Fesquet, “IIR digital filtering of non-
uniformly sampled signals via state representation,” Signal Processing,
vol. 90, no. 10, Oct. 2010, pp. 2811–2821.

[10] B. Bidégaray-Fesquet and L. Fesquet, “Non-uniform filter interpolation
in the frequency domain,” Sampling Theory in Signal and Image
Processing, vol. 10, no. 1–2, 2011, pp. 17–35.

[11] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin, “Asynchronous level
crossing analog to digital converters,” Measurement, vol. 37, no. 4, Jun.
2005, pp. 296–309.

[12] B. Bidégaray-Fesquet and L. Fesquet, “SPASS 2.0: Signal Processing
for ASynchronous Systems,” Software, May 2010.

[13] B. Bidégaray-Fesquet and M. Clausel, “Data driven sampling of os-
cillating signals,” Sampling Theory in Signal and Image Processing,
vol. 13, no. 2, 2014, pp. 175–187.

APPENDIX

We give here general formulae for trigonometric integral
functions which are intensively used in this paper, paying
particularly attention to define them for all x ∈ R and not
only x > 0 as usual in the literature.
The exponential integral is defined for all x ∈ R∗ by

Ei(ix) = −
∫ +∞

|x|
ei sgn(x)y dy

y
+ i sgn(x)

π

2
.

In particular we notice that Ei(−ix) = Ei(ix)∗.
The sine integral is defined for all x ∈ R by

Si(x) =

∫ x

0

sin(y)
dy

y
.

This is clearly an odd function. It can be expressed for all
x ∈ R∗ in terms of the exponential integral:

Si(x) =
1

2i
(Ei(ix)− Ei(−ix)) + sgn(x)

π

2
.

The cosine integral is defined for all x ∈ R∗ by

Ci(x) = −
∫ ∞
|x|

cos(y)
dy

y
,

which is an even function which can also be expressed in terms
of the exponential integral:

Ci(x) =
1

2
(Ei(ix) + Ei(−ix)).

We will use in fact need the integral of the cosine cardinal.
We classically denote for x positive

Cin(x) =

∫ |x|
0

(1− cos(y))
dy

y
= −Ci(x) + γ + ln |x|,

where γ is the Euler constant:

γ = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
.

Clearly Cin is an even function with Cin(0) = 0. The
exponential integral can be in turn expressed using the sine
and cosine integral functions, namely

Ei(ix) = Ci(x) + i Si(x)− sgn(x)i
π

2
.

