11 research outputs found

    Asymptomatic Leishmania infection in blood donors from a major blood bank in Northeastern Brazil: a cross-sectional study

    Get PDF
    This study has estimated the risk of Leishmania transmission via blood transfusion in one of the largest blood banks in Northeastern Brazil, where visceral leishmaniasis is endemic. Five hundred blood samples from donors were tested for circulating Leishmania spp. DNA by real-time PCR. Positive samples were tested by a species-specific conventional PCR targeting Leishmania infantum . Overall, 6.2% (95% CI: 4.1–8.3%) of the samples carried Leishmania DNA and in one sample the species was confirmed as L. infantum . No statistically significant differences were found in relation to gender, sex, education level, incomeas well as the place of residence between positive and negative blood donors. Our results confirm the presence of asymptomatic Leishmania carriers among blood donors in a large blood bank in Northeastern Brazil. Considering the studied population, we estimate that for every 1,000 blood donors screened, 41 to 83 will be positive for Leishmania DNA. This finding reinforces the urgent need for elaborating specific Blood bank guidelines to allow the early detection of asymptomatic Leishmania carriers among blood donors before their blood products are transfused to uninfected individuals

    In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the amazonian plant tachia grandiflora (Gentianaceae)

    Get PDF
    Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 μg/mL, respectively] and amplexine (IC50 = 7.1 μg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50 > 50 μg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials

    Use of Piranha Solution as An Alternative Route to Promote Bioactivation of PEEK Surface with Low Functionalization Times

    No full text
    This study aimed to achieve bioactivity on the PEEK surface using piranha solution through a lower functionalization time. For this purpose, the functionalization occurred with piranha solution and 98% sulfuric acid in the proportions of 1:2, 1:1, and 2:1 at periods of 30, 60, and 90 s. The samples treated for longer times at higher concentrations registered the characteristic spectroscopy band associated with sulfonation. Additionally, both chemical treatments allowed the opening of the aromatic ring, increasing the number of functional groups available and making the surface more hydrophilic. The piranha solution treatments with higher concentrations and longer times promoted greater heterogeneity in the surface pores, which affected the roughness of untreated PEEK. Furthermore, the treatments induced calcium deposition on the surface during immersion in SBF fluid. In conclusion, the proposed chemical modifications using sulfuric acid SPEEK 90 and, especially, the piranha solution PEEK-PS 2:1-90, were demonstrated to be promising in promoting the rapid bioactivation of PEEK-based implants

    Polysaccharides with Antitumor Effect in Breast Cancer: A Systematic Review of Non-Clinical Studies

    No full text
    Purpose: To review the effects of polysaccharides and their proposed mechanisms of action in breast cancer experimental models. Data sources, selection, and extraction: Articles were selected by using PubMed, ScienceDirect, Scopus, and Medline, assessed from 1 May 2019 to 1 July 2020. The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42020169103. Results: Most of the studies explore algae polysaccharides (43.2%), followed by mushrooms (13.5%), plants (13.5%), fruits (10.8%), fungus (2.7%), bacteria, (2.7%), and sea animals (2.7%). A total of 8.1% investigated only in vitro models, 62.1% evaluated only in vivo models, and 29.7% evaluated in vitro and in vivo models. The mechanism of action involves apoptosis, inhibition of cellular proliferation, angiogenesis, and antimetastatic effects through multiple pathways. Conclusions: Findings included here support further investigations on the anti-tumor effect of polysaccharides. Some polysaccharides, such as fucoidan and β-glucans, deserve detailed and structured studies aiming at translational research on breast tumors, since they are already used in the clinical practice of other proposals of human health

    An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches

    No full text
    Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome

    In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the Amazonian plant Tachia grandiflora (Gentianaceae)

    No full text
    Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials
    corecore