12 research outputs found
In vitro self-organized mouse small intestinal epithelial monolayer protocol
Developing protocols to obtain intestinal epithelial monolayers that recapitulate in vivo physiology to overcome the limitations of the organoids’ closed geometry has become of great interest during the last few years. Most of the developed culture models showed physiological-relevant cell composition but did not prove self-renewing capacities. Here, we show a simple method to obtain mouse small intestine-derived epithelial monolayers organized into proliferative crypt-like domains, containing stem cells, and differentiated villus-like regions, closely resembling the in vivo cell composition and distribution. In addition, we adapted our model to a tissue culture format compatible with functional studies and prove close to physiological barrier properties of our in vitro epithelial monolayers. Thus, we have set-up a protocol to generate physiologically relevant intestinal epithelial monolayers to be employed in assays where independent access to both luminal and basolateral compartments is needed, such as drug absorption, intracellular trafficking and microbiome-epithelium interaction assays
Editorial: When the Shape Does Matter: Three-Dimensional In Vitro Models of Epithelial Barriers
The Research Topic presented here includes a collection of selected pre-reviewed manuscripts that describe relevant recent advances in the fields of bioengineering and biophysics with a focus on the generation and analysis of novel three-dimensional (3D) in vitro models of epithelial barriers
Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance
Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffnessdependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons
Mimicking Epithelial Tissues in Three-Dimensional Cell Culture Models
Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future
The tumor suppressor CYLD regulates the p53 DNA damage response
The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD
Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function
Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies
Cyclophilins A and B oppositely regulate renal tubular epithelial cell phenotype
Altres ajuts: E.S. and M.D. were supported by the generous contribution of Asdent Patients Association. This work was supported in part by grants from Ministerio de Ciencia e Innovación, the Fundación Senefro (SEN2019 to A.M.), and Red de Investigación Renal REDinREN (12/0021/0013). K.A.N. is supported by National Institutes of Health (NIH) DK 47060. A.M. group holds the Quality Mention from the Generalitat de Catalunya.Restoration of kidney tubular epithelium following sublethal injury sequentially involves partial epithelial-mesenchymal transition (pEMT), proliferation, and further redifferentiation into specialized tubule epithelial cells (TECs). Because the immunosuppressant cyclosporine-A produces pEMT in TECs and inhibits the peptidyl-prolyl isomerase (PPIase) activity of cyclophilin (Cyp) proteins, we hypothesized that cyclophilins could regulate TEC phenotype. Here we demonstrate that in cultured TECs, CypA silencing triggers loss of epithelial features and enhances transforming growth factor β (TGF β)-induced EMT in association with upregulation of epithelial repressors Slug and Snail. This pro-epithelial action of CypA relies on its PPIase activity. By contrast, CypB emerges as an epithelial repressor, because CypB silencing promotes epithelial differentiation, prevents TGF β -induced EMT, and induces tubular structures in 3D cultures. In addition, in the kidneys of CypB knockout mice subjected to unilateral ureteral obstruction, inflammatory and pro-fibrotic events were attenuated. CypB silencing/knockout leads to Slug, but not Snail, downregulation. CypB support of Slug expression depends on its endoplasmic reticulum location, where it interacts with calreticulin, a calcium-buffering chaperone related to Slug expression. As CypB silencing reduces ionomycin-induced calcium release and Slug upregulation, we suggest that Slug expression may rely on CypB modulation of calreticulin-dependent calcium signaling. In conclusion, this work uncovers new roles for CypA and CypB in modulating TEC plasticity and identifies CypB as a druggable target potentially relevant in promoting kidney repair
Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function
Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies
Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function
Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies
Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function
Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies