518 research outputs found

    Giant edge state splitting at atomically precise zigzag edges

    Get PDF
    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunneling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunneling spectroscopy (STS), which reveals a pair of occupied / unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.Comment: 14 pages, 4 figure

    Electronic Band Dispersion of Graphene Nanoribbons via Fourier-Transformed Scanning Tunneling Spectroscopy

    Full text link
    Atomically precise armchair graphene nanoribbons of width N=7N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). The analysis of energy-dependent standing wave patterns of finite length ribbons allows, by Fourier transformation, the direct extraction of the dispersion relation of frontier electronic states. Aided by density functional theory calculations, we assign the states to the valence band, the conduction band and the next empty band of 7-AGNRs, determine effective masses of 0.42±0.08me0.42\pm 0.08\,m_e, 0.40±0.18me0.40\pm 0.18\,m_e and 0.20±0.03me0.20\pm 0.03\,m_e, respectively, and a band gap of 2.37±0.062.37\pm 0.06 eV.Comment: 20 pages, 7 figure

    Protein-based (bio)materials: a way toward high-performance graphene enzymatic biosensors

    Get PDF
    Enzymes are ideal receptors for biosensors since they offer excellent selectivity and high catalytic activity. However, once removed from their native environment, enzymes present a short lifespan determining a huge drawback for their application in bio-analytical systems. The use of appropriate immobilization matrices is an effective strategy to preserve enzymatic activity. In this work, an enzymatic amperometric biosensor is designed by entrapping lactate oxidase into a protein-based immobilization matrix, formed by the self-assembly of engineered repeat proteins. Electrochemically exfoliated graphene, functionalized with cobalt phthalocyanine, is employed as electroactive material and transducer of the sensor. Due to the extraordinary enzymatic stabilization provided by the engineered protein film, the device sensitivity is preserved for more than 6 months at room temperature. Furthermore, the presented biosensor can detect lactate with outstanding performance in terms of sensitivity, repeatability, and reproducibility

    Fully Conjugated Phthalocyanine Copper Metal-Organic Frameworks for Sodium-Iodine Batteries with Long-Time-Cycling Durability

    Get PDF
    Rechargeable sodium-iodine (Na-I-2) batteries are attracting growing attention for grid-scale energy storage due to their abundant resources, low cost, environmental friendliness, high theoretical capacity (211 mAh g(-1)), and excellent electrochemical reversibility. Nevertheless, the practical application of Na-I-2 batteries is severely hindered by their poor cycle stability owing to the serious dissolution of polyiodide in the electrolyte during charge/discharge processes. Herein, the atomic modulation of metal-bis(dihydroxy) species in a fully conjugated phthalocyanine copper metal-organic framework (MOF) for suppression of polyiodide dissolution toward long-time cycling Na-I-2 batteries is demonstrated. The Fe-2[(2,3,9,10,16,17,23,24-octahydroxy phthalocyaninato)Cu] MOF composited with I-2 (Fe-2-O-8-PcCu/I-2) serves as a cathode for a Na-I-2 battery exhibiting a stable specific capacity of 150 mAh g(-1) after 3200 cycles and outperforming the state-of-the-art cathodes for Na-I-2 batteries. Operando spectroelectrochemical and electrochemical kinetics analyses together with density functional theory calculations reveal that the square planar iron-bis(dihydroxy) (Fe-O-4) species in Fe-2-O-8-PcCu are responsible for the binding of polyiodide to restrain its dissolution into electrolyte. Besides the monovalent Na-I-2 batteries in organic electrolytes, the Fe-2-O-8-PcCu/I-2 cathode also operates stably in other metal-I-2 batteries like aqueous multivalent Zn-I-2 batteries. Thus, this work offers a new strategy for designing stable cathode materials toward high-performance metal-iodine batteries

    Pyrene-Fused s-Indacene

    Get PDF
    One antiaromatic polycyclic hydrocarbon (PH) with and without solubilizing tert-butyl substituents, namely s-indaceno[2,1-a:6,5-a′]dipyrene (IDPs), has been synthesized by a four-step protocol. The IDPs represent the longitudinal, peri-extension of the indeno[1,2-b]fluorene skeleton towards a planar 40 π-electron system. Their structures were unambiguously confirmed by X-ray crystallographic analysis. The optoelectronic properties were studied by UV/vis absorption spectroscopy and cyclic voltammetry. These studies revealed that peri-fusion renders the IDP derivatives with a narrow optical energy gap of 1.8 eV. The maximum absorption of IDPs is shifted by 160 nm compared to the parent indenofluorene. Two quasi-reversible oxidation as well as reduction steps indicate an excellent redox behavior attributed to the antiaromatic core. Formation of the radical cation and the dication was monitored by UV/vis absorption spectroscopy during titration experiments. Notably, the fusion of s-indacene with two pyrene moieties lead to IDPs with absorption maxima approaching the near infrared (NIR) regime

    Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes

    Full text link
    Graphene nanoribbons (GNRs) are a novel and intriguing class of materials in the field of nanoelectronics, since their properties, solely defined by their width and edge type, are controllable with high precision directly from synthesis. Here we study the correlation between the GNR structure and the corresponding device electrical properties. We investigated a series of field effect devices consisting of a film of armchair GNRs with different structures (namely width and/or length) as the transistor channel, contacted with narrowly spaced graphene sheets as the source-drain electrodes. By analyzing several tens of junctions for each individual GNR type, we observe that the values of the output current display a width-dependent behavior, indicating electronic bandgaps in good agreement with the predicted theoretical values. These results provide insights into the link between the ribbon structure and the device properties, which are fundamental for the development of GNR-based electronics.Comment: Published in Carbon (2019

    Sulfur-doped Nanographenes Containing Multiple Subhelicenes

    Get PDF
    In this work, we describe the synthesis and characterization of three novel sulfur-doped nanographenes (NGs) (1–3) containing multiple subhelicenes, including carbo[4]helicenes, thieno[4]helicenes, carbo[5]helicenes, and thieno[5]helicenes. Density functional theory calculations reveal that the helicene substructures in 1–3 possess dihedral angles from 15° to 34°. The optical energy gaps of 1–3 are estimated to be 2.67, 2.45, and 2.30 eV, respectively. These three sulfur-doped NGs show enlarged energy gaps compared to those of their pristine carbon analogues

    The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool

    Get PDF
    Herein, we report on the mechanochemical Scholl reaction of dendritic oligophenylene precursors to produce benchmark nanographenes such as hexa-peri-hexabenzocoronene (HBC), triangular shaped C60 and expanded C222 under solvent-free conditions. The solvent-free approach overcomes the bottleneck of solubility limitation in this well-known and powerful reaction. The mechanochemical approach allows tracking the reaction process by in situ pressure measurements. The quality of produced nanographenes has been confirmed by MALDI-TOF mass spectrometry and UV-Vis absorption spectroscopy. This approach paves the way towards gram scale and environmentally benign synthesis of extended nanographenes and possibly graphene nanoribbons suitable for application in carbon based electronics or energy applications
    corecore