77 research outputs found
Präzisionsspektroskopie an Wasserstoff und Deuterium
Eine erstmals durchgeführte optische Messung der Hyperfeinaufspaltung des 2s-Zustandes in Deuterium und die Beschreibung eines Aufbaus zur Messung der 1s-3s-Frequenz in Wasserstoff durch Anregung mit einen Frequenzkamm erwarten den Leser dieser Arbeit. Beide Experimente haben das Ziel, die Quantenelektrodynamik (QED) gebundener Zustände mit hoher Präzision zu testen.
Die Messung der Hyperfeinaufspaltung dient dabei der Verbesserung der Genauigkeit der sog. D21 = 8HFS(2s)− HFS(1s) Differenz. Da D21 weitgehend unabhängig von der Kernstruktur ist, kann trotz nicht akkurat bekanntem Protonenladungsradius QED auf einem Niveau von 10^−7 getestet werden. Im Rahmen der hier vorliegenden Arbeit wurde der Fehler dieser Größe um einen Faktor drei reduziert. Das Ergebnis für die 2s-Hyperfeinaufspaltung lautet: f_D HFS(2s) = 40 924 454(7) Hz. Durch eine neue, geschicktere Art der Datenaufnahme konnten außerdem viele systematische Fehler, insbesondere nichtlineare Driften des Referenzresonators, im Vergleich zu einer ähnlichen Messung an Wasserstoff reduziert werden.
Der zweite Teil der Arbeit beschreibt die Anstrengungen, die unternommen wurden und werden, um QED anhand ihrer Vorhersage der 1s-Lamb-Verschiebung zu prüfen. Dazu soll die Frequenz des 1s-3s-Übergangs in Wasserstoff erstmals absolut
gemessen werden. Ein weiteres Novum ist, daß hierzu ein frequenzvervierfachter, modengekopplter Laser zum Einsatz kommen soll. Im einzelnen wird der Aufbau und die Stabilisierung eines ps-Lasers, der Aufbau zweier Frequenzverdopplungs-Stufen, der Aufbau zur Messung der Absolutfrequenz des Spektroskopielasers, der Umbau des bestehenden 1s-2s-Vakuumsystems und die Entwicklung der Meß-Software beschrieben. Erste, von mir durchgeführte Versuche mit diesem neuen Spektrometer die Resonanz zu finden, blieben allerdings bislang erfolglos. Abschließend werden
daher eine Reihe von Verbesserung vorgeschlagen, die das Experiment mit hoher Wahrscheinlichkeit doch noch zum Erfolg führen werden.
Zusätzlich wird in dieser Arbeit die Theorie zur Zweiphotonen-Frequenzkammspektroskopie weiterentwickelt. Es werden konkrete Ausdrücke für die erwartete Linienform
und den Einfluß von Chirp auf die Anregungsrate angegeben
Rapid detection of Pfcrt and Pfmdr1 mutations in Plasmodium falciparum isolates by FRET and in vivo response to chloroquine among children from Osogbo, Nigeria
BACKGROUND: Chloroquine (CQ) has been in use in Africa for a long time. Because of misuse, this drug has now lost its efficacy due to the emergence of resistance strains in most parts of Africa. Recently, it was shown that after chloroquine has been withdrawn from the market, chloroquine-sensitive Plasmodium falciparum re-emerged and chloroquine could again be used successfully as an antimalarial. Surveillance of parasite populations is, therefore, important to decide whether chloroquine could be re-introduced. METHODS: To estimate the prevalence of the most pivotal polymorphisms, including Pfcrt K76T, Pfmdr1 N86Y and Pfmdr1 Y184F mutations, and their contributions to the outcome of CQ treatment, isolates from Osogbo Western Nigeria were tested using the Fluorescence Resonance Energy Transfer (FRET) method on a real-time PCR instrument. RESULTS: 116 children with acute uncomplicated P. falciparum malaria infections were treated with the standard dosage of CQ and followed-up for 28 days. Blood samples were collected on filter paper at enrollment and during follow-up for identification of parasite carrying the chloroquine resistant transporter (pfcrt) and P. falciparum-multi drug resistance (pfmdr1) gene mutations. Parasitological assessment of response to treatment showed that 62% of the patients were cured and 38% failed the CQ treatment. The presence of single mutant pfcrt (T76) alleles (P = 0.003) and in combination with mutant pfmdr1 Y86 (P = 0.028) was significantly associated with in vivo CQR. No other mutation on its own or in combinations was significantly associated with treatment outcome. Mutant pfcrt was more prevalent in both pre- and post-treatment isolates. No association was observed between age or initial level of parasitaemia and chloroquine treatment outcome. CONCLUSION: The result established the usefulness and accuracy of real time PCR in pfcrt and pfmdr1 mutation detection and also give further evidence to the reliability of the pfcrt T76 point mutation as a molecular marker for CQ resistance
Psychometric Evaluation of the German Version of the Demoralization Scale-II and the Association Between Demoralization, Sociodemographic, Disease- and Treatment-Related Factors in Patients With Cancer
Objective: To test the psychometric properties, internal consistency, dimensional
structure, and convergent validity of the German version of the Demoralization Scale-
II (DS-II), and to examine the association between demoralization, sociodemographic,
disease- and treatment-related variables in patients with cancer.
Methods: We recruited adult patients with cancer at a Psychosocial Counseling Center
and at oncological wards. Participants completed the 16-item DS-II, Patient Health
Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder Screener-2 (GAD-2), Distress
Thermometer (DT), and Body Image Scale (BIS). We analyzed internal consistency
of the DS-II using Cronbach‘s Alpha (a). We tested the dimensional structure of the
DS-II with Confirmatory Factor Analyses (CFA). Convergent validity was expressed
through correlation coefficients with established measures of psychological distress.
The associations between demoralization, sociodemographic, disease- and treatmentrelated
variables were examined with ANOVAs.
Results: Out of 942 eligible patients, 620 participated. The average DS-II total score
was M = 5.78, SD = 6.34, the Meaning and Purpose subscale M = 2.20, SD = 3.20,
and the Distress and Coping Ability subscale M = 3.58, SD = 3.45. Internal consistency
ranged from high to excellent with a = 0.93 for the DS-II total scale, a = 0.90 for
the Meaning and Purpose subscale, and a = 0.87 for the Distress and Coping Ability
subscale. The one-factor and the two-factor model yielded similar model fits, with
CFI and TLI ranging between 0.910 and 0.933, SRMR < 0.05. The DS-II correlated
significantly with depression (PHQ-9: r = 0.69), anxiety (GAD-2: r = 0.72), mental distress
(DT: r = 0.36), and body image disturbance (BIS: r = 0.58). High levels of demoralization
were reported by patients aged between 18 and 49 years (M = 7.77, SD = 6.26), patients
who were divorced/separated (M = 7.64, SD = 7.29), lung cancer patients (M = 9.29,
SD = 8.20), and those receiving no radiotherapy (M = 7.46, SD = 6.60).
Conclusion: The DS-II has very good psychometric properties and can be
recommended as a reliable tool for assessing demoralization in patients with cancer.
The results support the implementation of a screening for demoralization in specific risk
groups due to significantly increased demoralization scores
\emph{In-situ} determination of astro-comb calibrator lines to better than 10 cm s
Improved wavelength calibrators for high-resolution astrophysical
spectrographs will be essential for precision radial velocity (RV) detection of
Earth-like exoplanets and direct observation of cosmological deceleration. The
astro-comb is a combination of an octave-spanning femtosecond laser frequency
comb and a Fabry-P\'erot cavity used to achieve calibrator line spacings that
can be resolved by an astrophysical spectrograph. Systematic spectral shifts
associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of
10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad
spectral widths. Although these systematic shifts are very stable, their
correction is crucial to high accuracy astrophysical spectroscopy. Here, we
demonstrate an \emph{in-situ} technique to determine the systematic shifts of
astro-comb lines due to finite Fabry-P\'erot cavity dispersion. The technique
is practical for implementation at a telescope-based spectrograph to enable
wavelength calibration accuracy better than 10 cm/s.Comment: 11 pages, 7 figure
Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood Transfusion in Severe Malarial Anemia
Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM). Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9), p<0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05). Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development
A Randomized Controlled Phase Ib Trial of the Malaria Vaccine Candidate GMZ2 in African Children
BACKGROUND: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials. METHODOLOGY/PRINCIPAL FINDINGS: Thirty children one to five years of age were randomized to receive three doses of either 30 µg or 100 µg of GMZ2, or rabies vaccine. GMZ2, adjuvanted in aluminum hydroxide, was administered on Days 0, 28 and 56. All participants received a full course of their respective vaccination and were followed up for one year. Both 30 µg and 100 µg GMZ2 vaccine doses were well tolerated and induced antibodies and memory B-cells against GMZ2 as well as its antigenic constituents MSP3 and GLURP. After three doses of vaccine, the geometric mean concentration of antibodies to GMZ2 was 19-fold (95%CI: 11,34) higher in the 30 µg GMZ2 group than in the rabies vaccine controls, and 16-fold (7,36) higher in the 100 µg GMZ2 group than the rabies group. Geometric mean concentration of antibodies to MSP3 was 2.7-fold (1.6,4.6) higher in the 30 µg group than in the rabies group and 3.8-fold (1.5,9.6) higher in the 100 µg group. Memory B-cells against GMZ2 developed in both GMZ2 vaccinated groups. CONCLUSIONS/SIGNIFICANCE: Both 30 µg as well as 100 µg intramuscular GMZ2 are immunogenic, well tolerated, and safe in young, malaria-exposed Gabonese children. This result confirms previous findings in naïve and malaria-exposed adults and supports further clinical development of GMZ2. TRIAL REGISTRATION: ClinicalTrials.gov NCT00703066
Induction of Plasmodium falciparum-Specific CD4+ T Cells and Memory B Cells in Gabonese Children Vaccinated with RTS,S/AS01E and RTS,S/AS02D
The recombinant circumsporozoite protein (CS) based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01(E) and RTS,S/AS02(D). Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2(+) CD4(+) T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01(E) and RTS,S/AS02(D) induced adaptive immune responses including antibodies, circulating memory B cells and CD4(+) T cells directed against P. falciparum CS protein.ClinicalTrials.gov NCT00307021
- …