17 research outputs found

    Exploring dementia and neuronal ceroid lipofuscinosis genes in 100 FTD-like patients from 6 towns and rural villages on the Adriatic Sea cost of Apulia

    Get PDF
    Frontotemporal dementia (FTD) refers to a complex spectrum of clinically and genetically heterogeneous disorders. Although fully penetrant mutations in several genes have been identified and can explain the pathogenic mechanisms underlying a great portion of the Mendelian forms of the disease, still a significant number of families and sporadic cases remains genetically unsolved. We performed whole exome sequencing in 100 patients with a late-onset and heterogeneous FTD-like clinical phenotype from Apulia and screened mendelian dementia and neuronal ceroid lipofuscinosis genes. We identified a nonsense mutation in SORL1 VPS domain (p.R744X), in 2 siblings displaying AD with severe language problems and primary progressive aphasia and a near splice-site mutation in CLCN6 (p.S116P) segregating with an heterogeneous phenotype, ranging from behavioural FTD to FTD with memory onset and to the logopenic variant of primary progressive aphasia in one family. Moreover 2 sporadic cases with behavioural FTD carried heterozygous mutations in the CSF1R Tyrosin kinase flanking regions (p.E573K and p.R549H). By contrast, only a minority of patients carried pathogenic C9orf72 repeat expansions (1%) and likely moderately pathogenic variants in GRN (p.C105Y, p.C389fs and p.C139R) (3%). In concert with recent studies, our findings support a common pathogenic mechanisms between FTD and neuronal ceroid lipofuscinosis and suggests that neuronal ceroid lipofuscinosis genes should be investigated also in dementia patients with predominant frontal symptoms and language impairments

    Lack of replication of association between GIGYF2 variants and Parkinson disease

    No full text
    Mutations in GIGYF2 have recently been described as causative of Parkinson's disease in Europeans. In an attempt to replicate these results in independent populations, we sequenced the entire coding region of GIGYF2 in a large series of Portuguese and North American samples. We report the finding of two of the previously published mutations in neurologically normal Control individuals. This suggests that mutations in GIGYF2 are not strongly related to the development of the disease in either of these populations

    Correction of depression-associated circadian rhythm abnormalities is associated with lithium response in bipolar disorder

    No full text
    Background Bipolar disorder (BD) is characterized by episodes of depression and mania and disrupted circadian rhythms. Lithium is an effective therapy for BD, but only 30%–40% of patients are fully responsive. Preclinical models show that lithium alters circadian rhythms. However, it is unknown if the circadian rhythm effects of lithium are essential to its therapeutic properties. Methods In secondary analyses of a multi-center, prospective, trial of lithium for BD, we examined the relationship between circadian rhythms and therapeutic response to lithium. Using standardized instruments, we measured morningness, diurnal changes in mood, sleep, and energy (circadian rhythm disturbances) in a cross-sectional study of 386 BD subjects with varying lithium exposure histories. Next, we tracked symptoms of depression and mania prospectively over 12 weeks in a subset of 88 BD patients initiating treatment with lithium. Total, circadian, and affective mood symptoms were scored separately and analyzed. Results Subjects with no prior lithium exposure had the most circadian disruption, while patients stable on lithium monotherapy had the least. Patients who were stable on lithium with another drug or unstable on lithium showed intermediate levels of disruption. Treatment with lithium for 12 weeks yielded significant reductions in total and affective depression symptoms. Lithium responders (Li-Rs) showed improvement in circadian symptoms of depression, but non-responders did not. There was no difference between Li-Rs and nonresponders in affective, circadian, or total symptoms of mania. Conclusions Exposure to lithium is associated with reduced circadian disruption. Lithium response at 12 weeks was selectively associated with the reduction of circadian depressive symptoms. We conclude that stabilization of circadian rhythms may be an important feature of lithium\u27s therapeutic effects. Clinical Trials Registry: NCT0127253

    Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia

    Get PDF
    Abstract Background Autosomal recessive hereditary spastic paraplegia (HSP) due to AP4M1 mutations is a very rare neurodevelopmental disorder reported for only a few patients. Methods We investigated a Greek HSP family using whole exome sequencing (WES). Results A novel AP4M1A frameshift insertion, and a very rare missense variant were identified in all three affected siblings in the compound heterozygous state (p.V174fs and p.C319R); the unaffected parents were carriers of only one variant. Patients were affected with a combination of: (a) febrile seizures with onset in the first year of life (followed by epileptic non-febrile seizures); (b) distinctive facial appearance (e.g., coarse features, bulbous nose and hypomimia); (c) developmental delay and intellectual disability; (d) early-onset spastic weakness of the lower limbs; and (e) cerebellar hypoplasia/atrophy on brain MRI. Conclusions We review genotype-phenotype correlations and discuss clinical overlaps between different AP4-related diseases. The AP4M1 belongs to a complex that mediates vesicle trafficking of glutamate receptors, being likely involved in brain development and neurotransmission

    Loss-of-function mutations in RAB39B are associated with typical early-onset Parkinson disease

    No full text
    International audienceRab proteins are small molecular weight guanosine triphosphatases involved in the regulation of vesicular trafficking.1 Three of 4 X-linked RAB genes are specific to the brain, including RAB39B. Recently, Wilson et al.2 reported that mutations in RAB39B cause X-linked intellectual disability (ID) and pathologically confirmed Parkinson disease (PD). They identified a ∼45-kb deletion resulting in the complete loss of RAB39B in an Australian kindred and a missense mutation in a large Wisconsin kindred. Here, we report an additional affected man with typical PD and mild mental retardation harboring a new truncating mutation in RAB39B

    Early-Onset L-dopa-Responsive Parkinsonism with Pyramidal Signs Due to ATP13A2, PLA2G6, FBXO7 and Spatacsin Mutations

    No full text
    Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson's disease including supranuclear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido- pyramidal syndrome. (C) 2010 Movement Disorder Societ

    Additional file 1: FigureS1. of Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia

    No full text
    Expression of the AP4M1 gene in several regions of the human brain throughout development and aging. Note the higher expression levels during fetal development (birth is marked with a vertical solid line). Data from the Human Brain Transcriptome (HBT) project ( http://hbatlas.org ). CBC - cerebellar cortex, MD - mediodorsal nucleus of the thalamus, STR - striatum, AMY - amygdala, HIP - hippocampus, and NCX – neocortex. (PDF 68 kb
    corecore