4,721 research outputs found

    Infra-red stable fixed points of Yukawa couplings in non-minimal supersymmetric standard model with R-parity violation

    Get PDF
    We study the renormalization group evolution and the infra-red stable fixed points of the Yukawa couplings of the non-minimal supersymmetric standard model (NMSSM) with R-parity violation. Retaining only the R-parity violating couplings of higher generations, we analytically study the solutions of the renormalization group equations of all the couplings of the model. We find that there are no simultaneous non-trivial infra-red fixed points for all the couplings of the model, and that the infra-red fixed point structure of the model is similar to the MSSM with R-parity violation. In particular, we show that only the baryon number violating coupling λ233\lambda^{''}_{233}, together with top- and bottom-quark Yukawa couplings, approaches a non-trivial infra-red stable fixed point. However, this fixed point solution predicts a top-quark Yukawa coupling which is incompatible with the top quark mass for any value of tanβ\tan\beta.Comment: 12 pages, latex, no figures. To appear in Phys. Lett.

    Mock Catalogs for UHECR Studies

    Full text link
    We provide realistic mock-catalogs of cosmic rays above 40 EeV, for a pure proton composition, assuming their sources are a random subset of ordinary galaxies in a simulated, volume-limited survey, for various choices of source density: 10^-3.5 Mpc^-3, 10^-4.0 Mpc^-3 and 10^-4.5 Mpc^-3. The spectrum at the source is taken to be E^-2.3 and the effects of cosmological redshifting as well as photo-pion and e^+ e^- energy losses are included.Comment: 7 pages, 4 figure

    On Estimating the Flux of the Brightest Cosmic Ray Source above 57x10^18 eV

    Full text link
    The sources of ultra-high energy cosmic rays are not yet known. However, the discovery of anisotropic cosmic rays above 57x10^18 eV by the Pierre Auger Observatory suggests that a direct source detection may soon be possible. The near-future prospects for such a measurement are heavily dependent on the flux of the brightest source. In this work, we show that the flux of the brightest source above 57x10^18 eV is expected to comprise 10% or more of the total flux if two general conditions are true. The conditions are: 1.) the source objects are associated with galaxies other than the Milky Way and its closest neighbors, and 2.) the cosmic ray particles are protons or heavy nuclei such as iron and the Greisen-Zatsepin-Kuz'min effect is occurring. The Pierre Auger Observatory collects approximately 23 events above 57x10^18 eV per year. Therefore, it is plausible that, over the course of several years, tens of cosmic rays from a single source will be detected.Comment: 10 pages, 2 figures, submitted to Astrophysical Journal Letter

    Where do "red and dead" early-type void galaxies come from?

    Full text link
    Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a sub-population of bright red void galaxies can also be found, whose star formation was shut down long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids? We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium Simulation. We show that a global star formation suppression mechanism in the form of low luminosity "radio mode" AGN heating is sufficient to reproduce the observed population of void early-types. Radio mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately M_vir~10^12.5 M_sun, gas cooling onto the galaxy is suppressed and star formation subsequently fades. In the Millennium Simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high mass tail above this critical threshold. In such void halos, radio mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by halos of similar mass are predicted to have similar properties, consistent with observations.Comment: 6 pages, 3 figures, accepted MNRA

    Radiative Decay of Vector Quarkonium: Constraints on Glueballs and Light Gluinos

    Full text link
    Given a resonance of known mass, width, and J^{PC}, we can determine its gluonic branching fraction, b(R->gg), from data on its production in radiative vector quarkonium decay, V -> gamma+R. For most resonances b(R->gg) is found to be O(10%), consistent with being q-qbar states, but we find that both pseudoscalars observed in the 1440 MeV region have b(R->gg) ~ 1/2 - 1, and b(f_0^{++}->gg) ~ 1/2. As data improves, b(R->gg) should be a useful discriminator between q-qbar and gluonic states and may permit quantitative determination of the extent to which a particular resonance is a mixture of glueball and q-qbar. We also examine the regime of validity of pQCD for predicting the rate of V -> gamma+eta_gluino, the ``extra'' pseudoscalar bound state which would exist if there were light gluinos. From the CUSB limit on peaks in Upsilon -> gamma X, the mass range 3 GeV < m(eta_gluino) < 7 GeV can be excluded. An experiment must be significantly more sensitive to exclude an eta_gluino lighter than this.Comment: 36pp (inc figs),RU-94-04. (Replaces original which didn't latex correctly and didn't have figures.

    Interfacing citizen participation with planning and decision-making processes

    Get PDF
    The evolution of traditional and contemporary planning and decision-making models has given educational leaders several variations on a theme

    Damage and repair classification in reinforced concrete beams using frequency domain data

    Get PDF
    This research aims at developing a new vibration-based damage classification technique that can efficiently be applied to a real-time large data. Statistical pattern recognition paradigm is relevant to perform a reliable site-location damage diagnosis system. By adopting such paradigm, the finite element and other inverse models with their intensive computations, corrections and inherent inaccuracies can be avoided. In this research, a two-stage combination between principal component analysis and Karhunen-Loéve transformation (also known as canonical correlation analysis) was proposed as a statistical-based damage classification technique. Vibration measurements from frequency domain were tested as possible damage-sensitive features. The performance of the proposed system was tested and verified on real vibration measurements collected from five laboratory-scale reinforced concrete beams modelled with various ranges of defects. The results of the system helped in distinguishing between normal and damaged patterns in structural vibration data. Most importantly, the system further dissected reasonably each main damage group into subgroups according to their severity of damage. Its efficiency was conclusively proved on data from both frequency response functions and response-only functions. The outcomes of this two-stage system showed a realistic detection and classification and outperform results from the principal component analysis-only. The success of this classification model is substantially tenable because the observed clusters come from well-controlled and known state conditions

    Interacting Dark Matter and Dark Energy

    Full text link
    We discuss models for the cosmological dark sector in which the energy density of a scalar field approximates Einstein's cosmological constant and the scalar field value determines the dark matter particle mass by a Yukawa coupling. A model with one dark matter family can be adjusted so the observational constraints on the cosmological parameters are close to but different from what is predicted by the Lambda CDM model. This may be a useful aid to judging how tightly the cosmological parameters are constrained by the new generation of cosmological tests that depend on the theory of structure formation. In a model with two families of dark matter particles the scalar field may be locked to near zero mass for one family. This can suppress the long-range scalar force in the dark sector and eliminate evolution of the effective cosmological constant and the mass of the nonrelativistic dark matter particles, making the model close to Lambda CDM, until the particle number density becomes low enough to allow the scalar field to evolve. This is a useful example of the possibility for complexity in the dark sector.Comment: 15 pages, 6 figures; added a reference and a minor correctio

    Black-tailed prairie dog mounds: do they contribute to plant species diversity and nitrogen cycling?

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Includes bibliographical references.Soil mounds around burrows are natural disturbances in plant communities where prairie dogs (Cynomys spp.) occur. We hypothesized that one or more sub-dominant plant species are more abundant on black-tailed prairie dog (C. ludovicianus) mounds than on inter-mound areas or off-prairie-dog-town areas, and that soil mixing results in enhanced N-mineralization which increases N-content of plants growing on mounds. During summer 2000, we measured plant cover and biomass by species in on-mound, inter-mound, and off-town plots on three active prairie dog towns in each Texas, Colorado, and Montana. In Montana and Colorado, Solanum triflorum was found only on mounds, and Sphaeralcea coccinea was more frequent on prairie dog mounds than on inter-mound and off-town areas. In Texas, Achillea millefolium and Amaranthus blitoides was found only on prairie dog mounds, and Hoffmanseggia glauca was more frequent on mounds than on inter-mound and off-town areas. Biomass of grasses increased from on-mound to off-town sites while biomass of most forbs decreased. Plant nitrogen concentration showed a general decline from mounds to off-town areas. These findings support the hypothesis that soil disturbance caused by C. ludovicianus during construction and maintenance of their mounds contributes to plant species diversity and enhanced N-mineralization in grasslands

    Recalculation of Proton Compton Scattering in Perturbative QCD

    Get PDF
    At very high energy and wide angles, Compton scattering on the proton (gamma p -> gamma p) is described by perturbative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist and at leading order in alpha_s, with mutually inconsistent results, even when the same light-cone distribution amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain complete agreement with any previous result. Our results are closest to those of the most recent previous computation, differing significantly for just one of the three independent helicity amplitudes, and only for backward scattering angles. We present results for the unpolarized cross section, and for three different polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of the handbag and diquark models. In order to reduce uncertainties associated with alpha_s and the three-quark wave function normalization, we have normalized the Compton cross section using the proton elastic form factor. The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more way; added results for one more proton distribution amplitude; a few other minor changes. Version to appear in Phys. Rev.
    corecore