14 research outputs found

    Apport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse

    Get PDF
    La surveillance des sĂ©cheresses dans les rĂ©gions arides et semi-arides est cruciale car ses consĂ©quences pour l'agriculture peuvent ĂȘtre dramatiques. Afin d'aider les dĂ©cideurs Ă  Ă©tablir de bonnes pratiques de gestion de la ressource en eau et d'attĂ©nuation du risque des sĂ©cheresses, nous nous intĂ©ressons Ă  l'analyse des indices de stress hydriques. À cette fin, un modĂšle de bilan d'Ă©nergie Ă  double source permet, en combinant de l'information satellitaire (tempĂ©rature de surface, NDVI, albĂ©do et LAI) et de l'information mĂ©tĂ©orologique (tempĂ©rature de l'air, humiditĂ© relative de l'air, vitesse du vent et rayonnement global), de simuler l'Ă©vapotranspiration ainsi que le stress hydrique. Ces deux variables doivent ĂȘtre fournies d'une façon continue et sur une longue pĂ©riode temporelle pour une analyse adĂ©quate des pĂ©riodes de sĂ©cheresses. Or, les rĂ©seaux d'observations mĂ©tĂ©orologiques sont parfois insuffisants (faible densitĂ© des sites instrumentĂ©s et pĂ©riodes d'observation courtes et souvent non-concomitantes). Notre premier objectif est alors de simuler des scĂ©narios de diffĂ©rentes variables climatiques afin de les prolonger. Nous avons adaptĂ© un gĂ©nĂ©rateur de conditions mĂ©tĂ©orologiques "MetGen" qui permet de combler les lacunes prĂ©sentes sur une pĂ©riode d'observation et de projeter des scĂ©narios sur une pĂ©riode distincte de la pĂ©riode d'observation. MetGen exploite parmi ses co-variables, les donnĂ©es de rĂ©analyses qui fournissent des variables Ă  faible rĂ©solution spatiale (environ 31 km), comme source d'information importante. Nous comparons cette mĂ©thode avec des mĂ©thodes de correction de biais (univariĂ©e et multivariĂ©e) qui exploitent Ă©galement les donnĂ©es de rĂ©analyses. Cette approche statistique est validĂ©e selon deux volets : l'Ă©valuation de la capacitĂ© (1) Ă  bien reproduire les variables mĂ©tĂ©orologiques et (2) Ă  bien restituer les variables de bilan d'Ă©nergie. Les analyses, menĂ©es avec les donnĂ©es des stations mĂ©tĂ©orologiques du systĂšme d'observations, ont permis de valider MetGen sur une pĂ©riode de validation (2011-2016). Nous avons utilisĂ© alors cette mĂ©thode afin de simuler des donnĂ©es climatiques sur toute la pĂ©riode d'Ă©tude (2000-2019). Cette sĂ©rie ainsi que celle provenant des rĂ©analyses brutes sont utilisĂ©es comme forçages climatiques du modĂšle d'Ă©nergie Ă  double source SPARSE, afin de simuler deux indices de stress thermiques SI(SWG) et SI(ERA5) issus du gĂ©nĂ©rateur et des rĂ©analyses ERA5 respectivement, Ă  une Ă©chelle kilomĂ©trique. Ces deux indices sensibles aux anomalies de tempĂ©rature de surface, sont comparĂ©s avec d'autres indices standardisĂ©s issus de diffĂ©rentes longueurs d'onde : le NDVI issu du visible/proche infrarouge, SWI du micro-onde et un indice standardisĂ© de prĂ©cipitations UPI qui est utilisĂ© comme une rĂ©fĂ©rence pour notre analyse. Cette analyse est effectuĂ©e en termes de pertinence, de cohĂ©rence et de prĂ©cocitĂ© pour la dĂ©tection d'une sĂ©cheresse agronomique. Les deux indices thermiques ont montrĂ© des bonnes performances pour la dĂ©tection du stress, notamment SI(SWG) qui a montrĂ© plus de prĂ©cision et de capacitĂ© Ă  dĂ©tecter le stress hydrique d'une façon prĂ©coce. Ces analyses et tous ces approches statistiques sont effectuĂ©es au niveau du bassin versant de Merguellil situĂ© au centre de la Tunisie et qui prĂ©sente un modĂšle typique des rĂ©gions semi-arides.In arid and semi-arid areas, water is a major limitation factor for agricultural production. Indeed, these areas are characterized by a short rainy season and strong irregularity in time and space of precipitation events. This induces more frequent annual and intra-seasonal droughts. Evapotranspiration that characterizes plant water use and water stress are needed to better manage water resources and agrosystem health. They both can be simulated by a dual source energy balance model that relies on meteorological variables (air temperature, relative humidity, wind speed and global radiation) and satellite data (surface temperature, NDVI, albedo and LAI). These variables might be simulated for a long period in order to be adequate for drought studies purposes. However, available meteorological observations may often be insufficient to account for the temporal variability present in the study area (sparsity of gauged networks, the lack of long observation periods and the presence of numerous gaps). Our first objective is then to adapt a stochastic weather generator "MetGen" driven by large-scale reanalysis data (about 31 km of spatial resolution) to semi-arid climates and to the sub-daily resolution. MetGen serves to fill in missing data and to provide a temporal extension of multiple meteorological variables. It is compared with two state-of-the-art bias correction methods, univariate and multivariate methods, applied to large-scale reanalysis data. The surrogate series that are either produced by MetGen and the bias correction methods or taken as the un-processed reanalysis data, are evaluated in terms of their ability (1) to reproduce the statistical properties of the meteorological observations and (2) to reproduce energy balance outputs when constrained by observations series. The evaluation of these different statistical methods is performed on a validation period which included the observation period (2011-2016). Then, we used MetGen and the unprocessed reanalyses data to generate meteorological data during the whole study period (2000-2019). These surrogate series are used therefore to constrain the dual-source model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) in order to simulate water stress indices SI(SWG) and SI(ERA5) from MetGen and ERA5 reanalyses successively. Stress index anomalies retrieved from SPARSE are then compared to anomalies in other wave lengths in order to assess their consistency, reliability and capacity to detect incipient water stress and early droughts at the kilometer resolution. Those are the root zone soil moisture at low resolution derived from the microwave domain, active vegetation fraction cover deduced from NDVI time series and a uniformized precipitation index UPI as a reference for these analyses. Both thermal stress indices show a good performance to detect water status, especially using SI(SWG) which show more precision and ability to identify incipient water stress. Our analyses are carried on in the Kairouan area in central Tunisia which is subject to semi-arid climate

    Apport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse

    No full text
    In arid and semi-arid areas, water is a major limitation factor for agricultural production. Indeed, these areas are characterized by a short rainy season and strong irregularity in time and space of precipitation events. This induces more frequent annual and intra-seasonal droughts. Evapotranspiration that characterizes plant water use and water stress are needed to better manage water resources and agrosystem health. They both can be simulated by a dual source energy balance model that relies on meteorological variables (air temperature, relative humidity, wind speed and global radiation) and satellite data (surface temperature, NDVI, albedo and LAI). These variables might be simulated for a long period in order to be adequate for drought studies purposes. However, available meteorological observations may often be insufficient to account for the temporal variability present in the study area (sparsity of gauged networks, the lack of long observation periods and the presence of numerous gaps). Our first objective is then to adapt a stochastic weather generator "MetGen" driven by large-scale reanalysis data (about 31 km of spatial resolution) to semi-arid climates and to the sub-daily resolution. MetGen serves to fill in missing data and to provide a temporal extension of multiple meteorological variables. It is compared with two state-of-the-art bias correction methods, univariate and multivariate methods, applied to large-scale reanalysis data. The surrogate series that are either produced by MetGen and the bias correction methods or taken as the un-processed reanalysis data, are evaluated in terms of their ability (1) to reproduce the statistical properties of the meteorological observations and (2) to reproduce energy balance outputs when constrained by observations series. The evaluation of these different statistical methods is performed on a validation period which included the observation period (2011-2016). Then, we used MetGen and the unprocessed reanalyses data to generate meteorological data during the whole study period (2000-2019). These surrogate series are used therefore to constrain the dual-source model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) in order to simulate water stress indices SI(SWG) and SI(ERA5) from MetGen and ERA5 reanalyses successively. Stress index anomalies retrieved from SPARSE are then compared to anomalies in other wave lengths in order to assess their consistency, reliability and capacity to detect incipient water stress and early droughts at the kilometer resolution. Those are the root zone soil moisture at low resolution derived from the microwave domain, active vegetation fraction cover deduced from NDVI time series and a uniformized precipitation index UPI as a reference for these analyses. Both thermal stress indices show a good performance to detect water status, especially using SI(SWG) which show more precision and ability to identify incipient water stress. Our analyses are carried on in the Kairouan area in central Tunisia which is subject to semi-arid climate.La surveillance des sĂ©cheresses dans les rĂ©gions arides et semi-arides est cruciale car ses consĂ©quences pour l'agriculture peuvent ĂȘtre dramatiques. Afin d'aider les dĂ©cideurs Ă  Ă©tablir de bonnes pratiques de gestion de la ressource en eau et d'attĂ©nuation du risque des sĂ©cheresses, nous nous intĂ©ressons Ă  l'analyse des indices de stress hydriques. À cette fin, un modĂšle de bilan d'Ă©nergie Ă  double source permet, en combinant de l'information satellitaire (tempĂ©rature de surface, NDVI, albĂ©do et LAI) et de l'information mĂ©tĂ©orologique (tempĂ©rature de l'air, humiditĂ© relative de l'air, vitesse du vent et rayonnement global), de simuler l'Ă©vapotranspiration ainsi que le stress hydrique. Ces deux variables doivent ĂȘtre fournies d'une façon continue et sur une longue pĂ©riode temporelle pour une analyse adĂ©quate des pĂ©riodes de sĂ©cheresses. Or, les rĂ©seaux d'observations mĂ©tĂ©orologiques sont parfois insuffisants (faible densitĂ© des sites instrumentĂ©s et pĂ©riodes d'observation courtes et souvent non-concomitantes). Notre premier objectif est alors de simuler des scĂ©narios de diffĂ©rentes variables climatiques afin de les prolonger. Nous avons adaptĂ© un gĂ©nĂ©rateur de conditions mĂ©tĂ©orologiques "MetGen" qui permet de combler les lacunes prĂ©sentes sur une pĂ©riode d'observation et de projeter des scĂ©narios sur une pĂ©riode distincte de la pĂ©riode d'observation. MetGen exploite parmi ses co-variables, les donnĂ©es de rĂ©analyses qui fournissent des variables Ă  faible rĂ©solution spatiale (environ 31 km), comme source d'information importante. Nous comparons cette mĂ©thode avec des mĂ©thodes de correction de biais (univariĂ©e et multivariĂ©e) qui exploitent Ă©galement les donnĂ©es de rĂ©analyses. Cette approche statistique est validĂ©e selon deux volets : l'Ă©valuation de la capacitĂ© (1) Ă  bien reproduire les variables mĂ©tĂ©orologiques et (2) Ă  bien restituer les variables de bilan d'Ă©nergie. Les analyses, menĂ©es avec les donnĂ©es des stations mĂ©tĂ©orologiques du systĂšme d'observations, ont permis de valider MetGen sur une pĂ©riode de validation (2011-2016). Nous avons utilisĂ© alors cette mĂ©thode afin de simuler des donnĂ©es climatiques sur toute la pĂ©riode d'Ă©tude (2000-2019). Cette sĂ©rie ainsi que celle provenant des rĂ©analyses brutes sont utilisĂ©es comme forçages climatiques du modĂšle d'Ă©nergie Ă  double source SPARSE, afin de simuler deux indices de stress thermiques SI(SWG) et SI(ERA5) issus du gĂ©nĂ©rateur et des rĂ©analyses ERA5 respectivement, Ă  une Ă©chelle kilomĂ©trique. Ces deux indices sensibles aux anomalies de tempĂ©rature de surface, sont comparĂ©s avec d'autres indices standardisĂ©s issus de diffĂ©rentes longueurs d'onde : le NDVI issu du visible/proche infrarouge, SWI du micro-onde et un indice standardisĂ© de prĂ©cipitations UPI qui est utilisĂ© comme une rĂ©fĂ©rence pour notre analyse. Cette analyse est effectuĂ©e en termes de pertinence, de cohĂ©rence et de prĂ©cocitĂ© pour la dĂ©tection d'une sĂ©cheresse agronomique. Les deux indices thermiques ont montrĂ© des bonnes performances pour la dĂ©tection du stress, notamment SI(SWG) qui a montrĂ© plus de prĂ©cision et de capacitĂ© Ă  dĂ©tecter le stress hydrique d'une façon prĂ©coce. Ces analyses et tous ces approches statistiques sont effectuĂ©es au niveau du bassin versant de Merguellil situĂ© au centre de la Tunisie et qui prĂ©sente un modĂšle typique des rĂ©gions semi-arides

    Apport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse

    No full text
    In arid and semi-arid areas, water is a major limitation factor for agricultural production. Indeed, these areas are characterized by a short rainy season and strong irregularity in time and space of precipitation events. This induces more frequent annual and intra-seasonal droughts. Evapotranspiration that characterizes plant water use and water stress are needed to better manage water resources and agrosystem health. They both can be simulated by a dual source energy balance model that relies on meteorological variables (air temperature, relative humidity, wind speed and global radiation) and satellite data (surface temperature, NDVI, albedo and LAI). These variables might be simulated for a long period in order to be adequate for drought studies purposes. However, available meteorological observations may often be insufficient to account for the temporal variability present in the study area (sparsity of gauged networks, the lack of long observation periods and the presence of numerous gaps). Our first objective is then to adapt a stochastic weather generator "MetGen" driven by large-scale reanalysis data (about 31 km of spatial resolution) to semi-arid climates and to the sub-daily resolution. MetGen serves to fill in missing data and to provide a temporal extension of multiple meteorological variables. It is compared with two state-of-the-art bias correction methods, univariate and multivariate methods, applied to large-scale reanalysis data. The surrogate series that are either produced by MetGen and the bias correction methods or taken as the un-processed reanalysis data, are evaluated in terms of their ability (1) to reproduce the statistical properties of the meteorological observations and (2) to reproduce energy balance outputs when constrained by observations series. The evaluation of these different statistical methods is performed on a validation period which included the observation period (2011-2016). Then, we used MetGen and the unprocessed reanalyses data to generate meteorological data during the whole study period (2000-2019). These surrogate series are used therefore to constrain the dual-source model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) in order to simulate water stress indices SI(SWG) and SI(ERA5) from MetGen and ERA5 reanalyses successively. Stress index anomalies retrieved from SPARSE are then compared to anomalies in other wave lengths in order to assess their consistency, reliability and capacity to detect incipient water stress and early droughts at the kilometer resolution. Those are the root zone soil moisture at low resolution derived from the microwave domain, active vegetation fraction cover deduced from NDVI time series and a uniformized precipitation index UPI as a reference for these analyses. Both thermal stress indices show a good performance to detect water status, especially using SI(SWG) which show more precision and ability to identify incipient water stress. Our analyses are carried on in the Kairouan area in central Tunisia which is subject to semi-arid climate.La surveillance des sĂ©cheresses dans les rĂ©gions arides et semi-arides est cruciale car ses consĂ©quences pour l'agriculture peuvent ĂȘtre dramatiques. Afin d'aider les dĂ©cideurs Ă  Ă©tablir de bonnes pratiques de gestion de la ressource en eau et d'attĂ©nuation du risque des sĂ©cheresses, nous nous intĂ©ressons Ă  l'analyse des indices de stress hydriques. À cette fin, un modĂšle de bilan d'Ă©nergie Ă  double source permet, en combinant de l'information satellitaire (tempĂ©rature de surface, NDVI, albĂ©do et LAI) et de l'information mĂ©tĂ©orologique (tempĂ©rature de l'air, humiditĂ© relative de l'air, vitesse du vent et rayonnement global), de simuler l'Ă©vapotranspiration ainsi que le stress hydrique. Ces deux variables doivent ĂȘtre fournies d'une façon continue et sur une longue pĂ©riode temporelle pour une analyse adĂ©quate des pĂ©riodes de sĂ©cheresses. Or, les rĂ©seaux d'observations mĂ©tĂ©orologiques sont parfois insuffisants (faible densitĂ© des sites instrumentĂ©s et pĂ©riodes d'observation courtes et souvent non-concomitantes). Notre premier objectif est alors de simuler des scĂ©narios de diffĂ©rentes variables climatiques afin de les prolonger. Nous avons adaptĂ© un gĂ©nĂ©rateur de conditions mĂ©tĂ©orologiques "MetGen" qui permet de combler les lacunes prĂ©sentes sur une pĂ©riode d'observation et de projeter des scĂ©narios sur une pĂ©riode distincte de la pĂ©riode d'observation. MetGen exploite parmi ses co-variables, les donnĂ©es de rĂ©analyses qui fournissent des variables Ă  faible rĂ©solution spatiale (environ 31 km), comme source d'information importante. Nous comparons cette mĂ©thode avec des mĂ©thodes de correction de biais (univariĂ©e et multivariĂ©e) qui exploitent Ă©galement les donnĂ©es de rĂ©analyses. Cette approche statistique est validĂ©e selon deux volets : l'Ă©valuation de la capacitĂ© (1) Ă  bien reproduire les variables mĂ©tĂ©orologiques et (2) Ă  bien restituer les variables de bilan d'Ă©nergie. Les analyses, menĂ©es avec les donnĂ©es des stations mĂ©tĂ©orologiques du systĂšme d'observations, ont permis de valider MetGen sur une pĂ©riode de validation (2011-2016). Nous avons utilisĂ© alors cette mĂ©thode afin de simuler des donnĂ©es climatiques sur toute la pĂ©riode d'Ă©tude (2000-2019). Cette sĂ©rie ainsi que celle provenant des rĂ©analyses brutes sont utilisĂ©es comme forçages climatiques du modĂšle d'Ă©nergie Ă  double source SPARSE, afin de simuler deux indices de stress thermiques SI(SWG) et SI(ERA5) issus du gĂ©nĂ©rateur et des rĂ©analyses ERA5 respectivement, Ă  une Ă©chelle kilomĂ©trique. Ces deux indices sensibles aux anomalies de tempĂ©rature de surface, sont comparĂ©s avec d'autres indices standardisĂ©s issus de diffĂ©rentes longueurs d'onde : le NDVI issu du visible/proche infrarouge, SWI du micro-onde et un indice standardisĂ© de prĂ©cipitations UPI qui est utilisĂ© comme une rĂ©fĂ©rence pour notre analyse. Cette analyse est effectuĂ©e en termes de pertinence, de cohĂ©rence et de prĂ©cocitĂ© pour la dĂ©tection d'une sĂ©cheresse agronomique. Les deux indices thermiques ont montrĂ© des bonnes performances pour la dĂ©tection du stress, notamment SI(SWG) qui a montrĂ© plus de prĂ©cision et de capacitĂ© Ă  dĂ©tecter le stress hydrique d'une façon prĂ©coce. Ces analyses et tous ces approches statistiques sont effectuĂ©es au niveau du bassin versant de Merguellil situĂ© au centre de la Tunisie et qui prĂ©sente un modĂšle typique des rĂ©gions semi-arides

    Apport de la télédétection et des variables auxiliaires dans l'étude de l'évolution des périodes de sécheresse

    No full text
    In arid and semi-arid areas, water is a major limitation factor for agricultural production. Indeed, these areas are characterized by a short rainy season and strong irregularity in time and space of precipitation events. This induces more frequent annual and intra-seasonal droughts. Evapotranspiration that characterizes plant water use and water stress are needed to better manage water resources and agrosystem health. They both can be simulated by a dual source energy balance model that relies on meteorological variables (air temperature, relative humidity, wind speed and global radiation) and satellite data (surface temperature, NDVI, albedo and LAI). These variables might be simulated for a long period in order to be adequate for drought studies purposes. However, available meteorological observations may often be insufficient to account for the temporal variability present in the study area (sparsity of gauged networks, the lack of long observation periods and the presence of numerous gaps). Our first objective is then to adapt a stochastic weather generator "MetGen" driven by large-scale reanalysis data (about 31 km of spatial resolution) to semi-arid climates and to the sub-daily resolution. MetGen serves to fill in missing data and to provide a temporal extension of multiple meteorological variables. It is compared with two state-of-the-art bias correction methods, univariate and multivariate methods, applied to large-scale reanalysis data. The surrogate series that are either produced by MetGen and the bias correction methods or taken as the un-processed reanalysis data, are evaluated in terms of their ability (1) to reproduce the statistical properties of the meteorological observations and (2) to reproduce energy balance outputs when constrained by observations series. The evaluation of these different statistical methods is performed on a validation period which included the observation period (2011-2016). Then, we used MetGen and the unprocessed reanalyses data to generate meteorological data during the whole study period (2000-2019). These surrogate series are used therefore to constrain the dual-source model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) in order to simulate water stress indices SI(SWG) and SI(ERA5) from MetGen and ERA5 reanalyses successively. Stress index anomalies retrieved from SPARSE are then compared to anomalies in other wave lengths in order to assess their consistency, reliability and capacity to detect incipient water stress and early droughts at the kilometer resolution. Those are the root zone soil moisture at low resolution derived from the microwave domain, active vegetation fraction cover deduced from NDVI time series and a uniformized precipitation index UPI as a reference for these analyses. Both thermal stress indices show a good performance to detect water status, especially using SI(SWG) which show more precision and ability to identify incipient water stress. Our analyses are carried on in the Kairouan area in central Tunisia which is subject to semi-arid climate.La surveillance des sĂ©cheresses dans les rĂ©gions arides et semi-arides est cruciale car ses consĂ©quences pour l'agriculture peuvent ĂȘtre dramatiques. Afin d'aider les dĂ©cideurs Ă  Ă©tablir de bonnes pratiques de gestion de la ressource en eau et d'attĂ©nuation du risque des sĂ©cheresses, nous nous intĂ©ressons Ă  l'analyse des indices de stress hydriques. À cette fin, un modĂšle de bilan d'Ă©nergie Ă  double source permet, en combinant de l'information satellitaire (tempĂ©rature de surface, NDVI, albĂ©do et LAI) et de l'information mĂ©tĂ©orologique (tempĂ©rature de l'air, humiditĂ© relative de l'air, vitesse du vent et rayonnement global), de simuler l'Ă©vapotranspiration ainsi que le stress hydrique. Ces deux variables doivent ĂȘtre fournies d'une façon continue et sur une longue pĂ©riode temporelle pour une analyse adĂ©quate des pĂ©riodes de sĂ©cheresses. Or, les rĂ©seaux d'observations mĂ©tĂ©orologiques sont parfois insuffisants (faible densitĂ© des sites instrumentĂ©s et pĂ©riodes d'observation courtes et souvent non-concomitantes). Notre premier objectif est alors de simuler des scĂ©narios de diffĂ©rentes variables climatiques afin de les prolonger. Nous avons adaptĂ© un gĂ©nĂ©rateur de conditions mĂ©tĂ©orologiques "MetGen" qui permet de combler les lacunes prĂ©sentes sur une pĂ©riode d'observation et de projeter des scĂ©narios sur une pĂ©riode distincte de la pĂ©riode d'observation. MetGen exploite parmi ses co-variables, les donnĂ©es de rĂ©analyses qui fournissent des variables Ă  faible rĂ©solution spatiale (environ 31 km), comme source d'information importante. Nous comparons cette mĂ©thode avec des mĂ©thodes de correction de biais (univariĂ©e et multivariĂ©e) qui exploitent Ă©galement les donnĂ©es de rĂ©analyses. Cette approche statistique est validĂ©e selon deux volets : l'Ă©valuation de la capacitĂ© (1) Ă  bien reproduire les variables mĂ©tĂ©orologiques et (2) Ă  bien restituer les variables de bilan d'Ă©nergie. Les analyses, menĂ©es avec les donnĂ©es des stations mĂ©tĂ©orologiques du systĂšme d'observations, ont permis de valider MetGen sur une pĂ©riode de validation (2011-2016). Nous avons utilisĂ© alors cette mĂ©thode afin de simuler des donnĂ©es climatiques sur toute la pĂ©riode d'Ă©tude (2000-2019). Cette sĂ©rie ainsi que celle provenant des rĂ©analyses brutes sont utilisĂ©es comme forçages climatiques du modĂšle d'Ă©nergie Ă  double source SPARSE, afin de simuler deux indices de stress thermiques SI(SWG) et SI(ERA5) issus du gĂ©nĂ©rateur et des rĂ©analyses ERA5 respectivement, Ă  une Ă©chelle kilomĂ©trique. Ces deux indices sensibles aux anomalies de tempĂ©rature de surface, sont comparĂ©s avec d'autres indices standardisĂ©s issus de diffĂ©rentes longueurs d'onde : le NDVI issu du visible/proche infrarouge, SWI du micro-onde et un indice standardisĂ© de prĂ©cipitations UPI qui est utilisĂ© comme une rĂ©fĂ©rence pour notre analyse. Cette analyse est effectuĂ©e en termes de pertinence, de cohĂ©rence et de prĂ©cocitĂ© pour la dĂ©tection d'une sĂ©cheresse agronomique. Les deux indices thermiques ont montrĂ© des bonnes performances pour la dĂ©tection du stress, notamment SI(SWG) qui a montrĂ© plus de prĂ©cision et de capacitĂ© Ă  dĂ©tecter le stress hydrique d'une façon prĂ©coce. Ces analyses et tous ces approches statistiques sont effectuĂ©es au niveau du bassin versant de Merguellil situĂ© au centre de la Tunisie et qui prĂ©sente un modĂšle typique des rĂ©gions semi-arides

    Remote sensing and auxiliary data contribution in the study of periods of droughts

    No full text
    La surveillance des sĂ©cheresses dans les rĂ©gions arides et semi-arides est cruciale car ses consĂ©quences pour l'agriculture peuvent ĂȘtre dramatiques. Afin d'aider les dĂ©cideurs Ă  Ă©tablir de bonnes pratiques de gestion de la ressource en eau et d'attĂ©nuation du risque des sĂ©cheresses, nous nous intĂ©ressons Ă  l'analyse des indices de stress hydriques. À cette fin, un modĂšle de bilan d'Ă©nergie Ă  double source permet, en combinant de l'information satellitaire (tempĂ©rature de surface, NDVI, albĂ©do et LAI) et de l'information mĂ©tĂ©orologique (tempĂ©rature de l'air, humiditĂ© relative de l'air, vitesse du vent et rayonnement global), de simuler l'Ă©vapotranspiration ainsi que le stress hydrique. Ces deux variables doivent ĂȘtre fournies d'une façon continue et sur une longue pĂ©riode temporelle pour une analyse adĂ©quate des pĂ©riodes de sĂ©cheresses. Or, les rĂ©seaux d'observations mĂ©tĂ©orologiques sont parfois insuffisants (faible densitĂ© des sites instrumentĂ©s et pĂ©riodes d'observation courtes et souvent non-concomitantes). Notre premier objectif est alors de simuler des scĂ©narios de diffĂ©rentes variables climatiques afin de les prolonger. Nous avons adaptĂ© un gĂ©nĂ©rateur de conditions mĂ©tĂ©orologiques "MetGen" qui permet de combler les lacunes prĂ©sentes sur une pĂ©riode d'observation et de projeter des scĂ©narios sur une pĂ©riode distincte de la pĂ©riode d'observation. MetGen exploite parmi ses co-variables, les donnĂ©es de rĂ©analyses qui fournissent des variables Ă  faible rĂ©solution spatiale (environ 31 km), comme source d'information importante. Nous comparons cette mĂ©thode avec des mĂ©thodes de correction de biais (univariĂ©e et multivariĂ©e) qui exploitent Ă©galement les donnĂ©es de rĂ©analyses. Cette approche statistique est validĂ©e selon deux volets : l'Ă©valuation de la capacitĂ© (1) Ă  bien reproduire les variables mĂ©tĂ©orologiques et (2) Ă  bien restituer les variables de bilan d'Ă©nergie. Les analyses, menĂ©es avec les donnĂ©es des stations mĂ©tĂ©orologiques du systĂšme d'observations, ont permis de valider MetGen sur une pĂ©riode de validation (2011-2016). Nous avons utilisĂ© alors cette mĂ©thode afin de simuler des donnĂ©es climatiques sur toute la pĂ©riode d'Ă©tude (2000-2019). Cette sĂ©rie ainsi que celle provenant des rĂ©analyses brutes sont utilisĂ©es comme forçages climatiques du modĂšle d'Ă©nergie Ă  double source SPARSE, afin de simuler deux indices de stress thermiques SI(SWG) et SI(ERA5) issus du gĂ©nĂ©rateur et des rĂ©analyses ERA5 respectivement, Ă  une Ă©chelle kilomĂ©trique. Ces deux indices sensibles aux anomalies de tempĂ©rature de surface, sont comparĂ©s avec d'autres indices standardisĂ©s issus de diffĂ©rentes longueurs d'onde : le NDVI issu du visible/proche infrarouge, SWI du micro-onde et un indice standardisĂ© de prĂ©cipitations UPI qui est utilisĂ© comme une rĂ©fĂ©rence pour notre analyse. Cette analyse est effectuĂ©e en termes de pertinence, de cohĂ©rence et de prĂ©cocitĂ© pour la dĂ©tection d'une sĂ©cheresse agronomique. Les deux indices thermiques ont montrĂ© des bonnes performances pour la dĂ©tection du stress, notamment SI(SWG) qui a montrĂ© plus de prĂ©cision et de capacitĂ© Ă  dĂ©tecter le stress hydrique d'une façon prĂ©coce. Ces analyses et tous ces approches statistiques sont effectuĂ©es au niveau du bassin versant de Merguellil situĂ© au centre de la Tunisie et qui prĂ©sente un modĂšle typique des rĂ©gions semi-arides.In arid and semi-arid areas, water is a major limitation factor for agricultural production. Indeed, these areas are characterized by a short rainy season and strong irregularity in time and space of precipitation events. This induces more frequent annual and intra-seasonal droughts. Evapotranspiration that characterizes plant water use and water stress are needed to better manage water resources and agrosystem health. They both can be simulated by a dual source energy balance model that relies on meteorological variables (air temperature, relative humidity, wind speed and global radiation) and satellite data (surface temperature, NDVI, albedo and LAI). These variables might be simulated for a long period in order to be adequate for drought studies purposes. However, available meteorological observations may often be insufficient to account for the temporal variability present in the study area (sparsity of gauged networks, the lack of long observation periods and the presence of numerous gaps). Our first objective is then to adapt a stochastic weather generator "MetGen" driven by large-scale reanalysis data (about 31 km of spatial resolution) to semi-arid climates and to the sub-daily resolution. MetGen serves to fill in missing data and to provide a temporal extension of multiple meteorological variables. It is compared with two state-of-the-art bias correction methods, univariate and multivariate methods, applied to large-scale reanalysis data. The surrogate series that are either produced by MetGen and the bias correction methods or taken as the un-processed reanalysis data, are evaluated in terms of their ability (1) to reproduce the statistical properties of the meteorological observations and (2) to reproduce energy balance outputs when constrained by observations series. The evaluation of these different statistical methods is performed on a validation period which included the observation period (2011-2016). Then, we used MetGen and the unprocessed reanalyses data to generate meteorological data during the whole study period (2000-2019). These surrogate series are used therefore to constrain the dual-source model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) in order to simulate water stress indices SI(SWG) and SI(ERA5) from MetGen and ERA5 reanalyses successively. Stress index anomalies retrieved from SPARSE are then compared to anomalies in other wave lengths in order to assess their consistency, reliability and capacity to detect incipient water stress and early droughts at the kilometer resolution. Those are the root zone soil moisture at low resolution derived from the microwave domain, active vegetation fraction cover deduced from NDVI time series and a uniformized precipitation index UPI as a reference for these analyses. Both thermal stress indices show a good performance to detect water status, especially using SI(SWG) which show more precision and ability to identify incipient water stress. Our analyses are carried on in the Kairouan area in central Tunisia which is subject to semi-arid climate

    Analysis of Multispectral Drought Indices in Central Tunisia

    No full text
    International audienceSurface water stress remote sensing indices can be very helpful to monitor the impact of drought on agro-ecosystems, and serve as early warning indicators to avoid further damages to the crop productivity. In this study, we compare indices from three different spectral domains: the plant water use derived from evapotranspiration retrieved using data from the thermal infrared domain, the root zone soil moisture at low resolution derived from the microwave domain using the Soil Water Index (SWI), and the active vegetation fraction cover deduced from the Normalized Difference Vegetation Index (NDVI) time series. The thermal stress index is computed from a dual-source model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) that relies on meteorological variables and remote sensing data. In order to extend in time the available meteorological series, we compare the use of a statistical downscaling method applied to reanalysis data with the use of the unprocessed reanalysis data. Our study shows that thermal indices show comparable performance overall compared to the SWI at better resolution. However, thermal indices are more sensitive for a drought period and tend to react quickly to water stress

    Climate Change impacts on hydrological and plant resources in the agro-pastoral Sahel

    No full text
    International audienceThe Sahel is a semi-arid region where the majority of the population depends on subsistence farming. This region is considered as a hotspot for climate change with an expected warming of 3 to 4°C by 2100. Indeed, climate projections show that dry periods are likely to be longer and extreme rainfall will be more frequent. These changes could have a major impact on hydrological and vegetal resources. This study aims to assess these impacts on a typical Sahelian agro-pastoral ecosystem dominated by millet crops and shrubby savannah in South-Western Niger. Climate scenarios are constructed from a local set of observed climate data combined with CMIP6 and other climate scenarios dedicated to Sahelian region. These scenarios are used to constrain SiSPAT SVAT (soil-vegetation-atmosphere transfer) model in order to simulate the surface water and energy fluxes. Results show that both energy and water balances are deeply influenced by temperature and air humidity changes. Temperature increase mainly affects the sensible heat flux (H), e.g., H decreases by 38% for a 3°C of temperature increase. Moreover, results show that the impact of temperature and humidity changes on evapotranspiration, partly compensate each other; higher temperature in the rainy season, leads to higher evapotranspiration values, contrarily to the impact of humidity increase. The surface water balance is mostly influenced by the rainfall regime modification, e.g., intensification of extreme rainfall leads to 59% increase in drainage. It also generates more runoff (+ 500 %), that would increase the risk of flooding but could cause a rise in groundwater levels, which is called the Sahelian paradox. Finally, it also increases the soil water storage, which could lead to a longer vegetation cycle. For this aim, coupling with crop and/or hydrological modelling would be useful to quantify the impacts of climate evolution on vegetal and water resources dynamics. It would allow to find efficiently adapted strategies for crop and water management

    Sub-daily stochastic weather generator based on reanalyses for water stress retrieval in central Tunisia

    No full text
    In semi-arid areas, evapotranspiration that characterizes plant water use and water stress are needed to better manage water resources and agrosystem health. They both can be simulated by a dual source energy balance model that relies on hydro-meteorological variables and satellite data. Available hydro-meteorological observations may often be insufficient to account for the variability present in the study area. Our aim is to adapt a stochastic weather generator (SWG) driven by large-scale reanalysis data to semi-arid climates and to the sub-daily resolution. The SWG serves to perform consistent gap-filling and temporal extension of multiple hydro-meteorological variables. It is compared with two state-of-the-art bias correction methods applied to large-scale reanalysis data. The surrogate series that are either produced by the SWG and the bias correction methods with a cross-validation scheme or taken as the un-processed reanalysis data, are evaluated in terms of their ability to reproduce the statistical properties of the hydro-meteorological observations. They are also used to constrain a dual source energy balance model and compared in terms of estimated evapotranspiration and water stress
    corecore