714 research outputs found
Photoexcitation of graphene with twisted light
We study theoretically the interaction of twisted light with graphene. The
light-matter interaction matrix elements between the tight-binding states of
electrons in graphene are determined near the Dirac points. We examine the
dynamics of the photoexcitation process by posing the equations of motion of
the density matrix and working up to second order in the field. The time
evolution of the angular momentum of the photoexcited electrons and their
associated photocurrents are examined in order to elucidate the mechanisms of
angular momentum transfer. We find that the transfer of spin and orbital
angular momentum from light to the electrons is more akin here to the case of
intraband than of interband transitions in semiconductors, due to the fact that
the two relevant energy bands of graphene originate from the same atomic
orbitals.Comment: 18 pages, 4 figure
Inter-annual variability of the Pelagic-Benthic coupling in the upwelling system off central Chile
International audienceThe coastal region of central Chile (36° S) is one of the most productive coastal systems, characterized by a marked seasonality in the upwelling regime, that brings subsurface waters rich in nutrient and poor in oxygen (ESSW) into the euphotic zone. This oceanographic condition depends basically on the equatorward wind strength and is modified on different time scales, with the El Niño-Southern Oscillation (ENSO) phenomenon as the main source of interannual variability in the Pacific Ocean. Here we present an effort to integrate physical and biogeochemical variability associated with in situ information and experiments at coastal stations off central Chile (36° S) in order to improve the knowledge on the pelagic-benthic coupling in this upwelling system during the warm ENSO phase or El Niño. Carbon fluxes exported from the water column to the sediments and the ammonium exchange across the sediment-water interface are discussed together with oceanographic and benthic conditions. All measurements and estimations were carried out from May 1997 until April 2001 at two stations, one located inside Concepción Bay (~28 m depth), and the other on the continental shelf at ~36° S (~88 m depth). The results show that the pelagic and benthic systems are strongly coupled off central Chile (36° S). Oceanographic variability associated with upwelling events (seasonal scale) and an El Niño event (interannual scale) was observed. The carbon fluxes exported to the sediments, the benthic conditions (i.e., quantity and quality of the sediment organic matter), and the ammonium exchange across the sediment-water interface, responded to the seasonal regime of upwelling during non El Niño years as well as to the ENSO related oceanographic variability
Functional approach to quantum friction: effective action and dissipative force
We study the Casimir friction due to the relative, uniform, lateral motion of
two parallel semitransparent mirrors coupled to a vacuum real scalar field,
. We follow a functional approach, whereby nonlocal terms in the action
for , concentrated on the mirrors' locii, appear after functional
integration of the microscopic degrees of freedom. This action for ,
which incorporates the relevant properties of the mirrors, is then used as the
starting point for two complementary evaluations: Firstly, we calculate the {
in-out} effective action for the system, which develops an imaginary part,
hence a non-vanishing probability for the decay (because of friction) of the
initial vacuum state. Secondly, we evaluate another observable: the vacuum
expectation value of the frictional force, using the { in-in} or Closed Time
Path formalism. Explicit results are presented for zero-width mirrors and
half-spaces, in a model where the microscopic degrees of freedom at the mirrors
are a set of identical quantum harmonic oscillators, linearly coupled to $\phi
Electronic and Geometric Corrugation of Periodically Rippled, Self-nanostructured Graphene Epitaxially Grown on Ru(0001)
Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern
of hills and valleys in Scanning Tunneling Microscopy (STM) images. To which
extent the observed "ripples" are structural or electronic in origin have been
much disputed recently. A combination of ultrahigh resolution STM images and
Helium Atom diffraction data shows that i) the graphene lattice is rotated with
respect to the lattice of Ru and ii) the structural corrugation as determined
from He diffraction is substantially smaller (0.015 nm) than predicted (0.15
nm) or reported from X-Ray Diffraction or Low Energy Electron Diffraction. The
electronic corrugation, on the contrary, is strong enough to invert the
contrast between hills and valleys above +2.6 V as new, spatially localized
electronic states enter the energy window of the STM. The large electronic
corrugation results in a nanostructured periodic landscape of electron and
holes pockets.Comment: 16 pages, 6 figure
Enhanced selectivity towards O2 and H2 dissociation on ultrathin Cu films on Ru(0001)
The following article appeared in Journal of Chemical Physics 137.7 (2012): 074706 and may be found at http://scitation.aip.org/content/aip/journal/jcp/137/7/10.1063/1.4746942The reactivity of Cu monolayer (ML) and bilayer films grown on Ru(0001) towards O2 and H2 has been investigated. O2 initial sticking coefficients were determined using the King and Wells method in the incident energy range 40-450 meV, and compared to the corresponding values measured on clean Ru(0001) and Cu(111) surfaces. A relative large O2 sticking coefficient (∼0.5-0.8) was measured for 1 ML Cu and even 2 ML Cu/Ru(0001). At low incident energies, this is one order of magnitude larger than the value observed on Cu(111). In contrast, the corresponding reactivity to H2 was near zero on both Cu monolayer and bilayer films, for incident energies up to 175 meV. Water adsorption on 2 ML Cu/Ru(0001) was found to behave quite differently than on the Ru(0001) and Cu(111) surfaces. Our study shows that Cu/Ru(0001) is a highly selective system, which presents a quite different chemical reactivity towards different species in the same range of collision energiesThe authors gratefully acknowledge the financial support by the Ministerio de Educación y Ciencia through projects CONSOLIDER-INGENIO 2010 on Molecular Nanoscience and FIS2007-61114 and Comunidad de Madrid through the program NANOMAGNET S-0505/MAT/0194. P.P. acknowledges support through the Marie Curie AMAROUT EU action and the Spanish MICINN “Juan de la Cierva” contrac
The status of shark and ray fishery resources in the Gulf of California: applied research to improve management and conservation
Seasonal surveys were conducted during 1998–1999 in Baja California, Baja California Sur, Sonora, and Sinaloa to determine the extent and activities of artisanal elasmobranch fisheries in the Gulf of California. One hundred and forty–seven fishing sites, or camps, were documented, the majority of which (n = 83) were located in Baja California Sur. Among camps with adequate fisheries information, the great majority (85.7%) targeted elasmobranchs during some part of the year. Most small, demersal sharks and rays were landed in mixed species fisheries that also targeted demersal teleosts, but large sharks were usually targeted in directed drift gillnet or, to a lesser extent, surface longline fisheries. Artisanal fishermen were highly opportunistic, and temporally switched targets depending on the local productivity of teleost, invertebrate, and elasmobranch fishery resources. Major fisheries for small sharks ( 1.5 m, “tiburón”) were minor components of artisanal elasmobranch fisheries in Sonora and Sinaloa, but were commonly targeted during summer and early autumn in Baja California and Baja California Sur. The pelagic thresher shark (Alopias pelagicus) and silky shark (Carcharhinus falciformis) were most commonly landed in Baja California, whereas a diverse assemblage of pelagic and large coastal sharks was noted among Baja California Sur landings. Rays dominated summer landings in Baja California and Sinaloa, when elevated catch rates of the shovelnose guitarfish (Rhinobatos productus, 13.2 individuals/vessel/trip) and golden cownose ray (Rhinoptera steindachneri, 11.1 individuals/vesse/trip) primarily supported the respective fisheries. The Sonoran artisanal elasmobranch fishery was the most expansive recorded during this study, and rays (especially R. productus) dominated spring and summer landings in this state. Seasonal catch rates of small demersal sharks and rays were considerably greater in Sonora than in other surveyed states. Many tiburón populations (e.g., C. leucas, C. limbatus, C. obscurus, Galeocerdo cuvier) have likely been overfished, possibly shifting effort towards coastal populations of cazón and rays. Management recommendations, including conducting demographic analyses using available life history data, determining and protecting nursery areas, and enacting seasonal closures in areas of elasmobranch aggregation (e.g., reproduction, feeding), are proposed. Without effective, enforceable management to sustain or rebuild targeted elasmobranch populations in the Gulf of California, collapse of many fisheries is a likely outcome. (PDF contains 243 pages
Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A
Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008)] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.publishedVersionFil: Sparacino, Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Sparacino, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Farias, María Gimena. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Fil: Farias, María Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Fil: Farias, María Gimena. Ministerio de Ciencia, Tecnología e Innovación. Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación. Fondo para la Investigación Científica y Tecnológica; Argentina.Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Lamberti, Pedro Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Otras Ciencias Física
Emergence of the pointer basis through the dynamics of correlations
We use the classical correlation between a quantum system being measured and
its measurement apparatus to analyze the amount of information being retrieved
in a quantum measurement process. Accounting for decoherence of the apparatus,
we show that these correlations may have a sudden transition from a decay
regime to a constant level. This transition characterizes a non-asymptotic
emergence of the pointer basis, while the system-apparatus can still be quantum
correlated. We provide a formalization of the concept of emergence of a pointer
basis in an apparatus subject to decoherence. This contrast of the pointer
basis emergence to the quantum to classical transition is demonstrated in an
experiment with polarization entangled photon pairs.Comment: 4+2 pgs, 3 figures. Title changed. Revised version to appear on PR
- …