332 research outputs found

    Network-Assisted Investigation of Combined Causal Signals from Genome-Wide Association Studies in Schizophrenia

    Get PDF
    With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had PmetaHLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available

    Comprehensive Gene-Based Association Study of a Chromosome 20 Linked Region Implicates Novel Risk Loci for Depressive Symptoms in Psychotic Illness

    Get PDF
    Background Prior genomewide scans of schizophrenia support evidence of linkage to regions of chromosome 20. However, association analyses have yet to provide support for any etiologically relevant variants. Methods We analyzed 2988 LD-tagging single nucleotide polymorphisms (SNPs) in 327 genes on chromosome 20, to test for association with schizophrenia in 270 Irish high-density families (ISHDSF, N = 270 families, 1408 subjects). These SNPs were genotyped using an Illumina iSelect genotyping array which employs the Infinium assay. Given a previous report of novel linkage with chromosome 20p using latent classes of psychotic illness in this sample, association analysis was also conducted for each of five factor-derived scores based on the Operational Criteria Checklist for Psychotic Illness (delusions, hallucinations, mania, depression, and negative symptoms). Tests of association were conducted using the PDTPHASE and QPDTPHASE packages of UNPHASED. Empirical estimates of gene-wise significance were obtained by adaptive permutation of a) the smallest observed P-value and b) the threshold-truncated product of P-values for each locus. Results While no single variant was significant after LD-corrected Bonferroni-correction, our gene-dropping analyses identified loci which exceeded empirical significance criteria for both gene-based tests. Namely, R3HDML and C20orf39 are significantly associated with depressive symptoms of schizophrenia (PempP-value and truncated-product methods, respectively. Conclusions Using a gene-based approach to family-based association, R3HDML and C20orf39 were found to be significantly associated with clinical dimensions of schizophrenia. These findings demonstrate the efficacy of gene-based analysis and support previous evidence that chromosome 20 may harbor schizophrenia susceptibility or modifier loci

    Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator

    Get PDF
    Experiments were performed with prototype antenna tiles for the Mileura Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the widefield, wideband properties of their design and to characterize the radio frequency interference (RFI) between 80 and 300 MHz at the site in Western Australia. Observations acquired during the six month deployment confirmed the predicted sensitivity of the antennas, sky-noise dominated system temperatures, and phase-coherent interferometric measurements. The radio spectrum is remarkably free of strong terrestrial signals, with the exception of two narrow frequency bands allocated to satellite downlinks and rare bursts due to ground-based transmissions being scattered from aircraft and meteor trails. Results indicate the potential of the MWA-LFD to make significant achievements in its three key science objectives: epoch of reionziation science, heliospheric science, and radio transient detection.Comment: Accepted by AJ. 17 pages with figure

    Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia

    Get PDF
    With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had P(meta)<1 × 10⁻⁴, including the gene HLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Convergent Functional Genomics of Schizophrenia: From Comprehensive Understanding to Genetic Risk Prediction

    Get PDF
    poster abstractWe have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study (GWAS) data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein coupled receptor signaling and cAMP- mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data is consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European-American (EA) and one African-American (AA), increasing overlap, reproducibility and consistency of findings from SNPs to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Lastly, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics, and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology

    Reduced Rate of Neural Differentiation in the Dentate Gyrus of Adult Dysbindin Null (Sandy) Mouse

    Get PDF
    Genetic variations in the gene encoding dysbindin has consistently been associated with schizophrenia and bipolar disorder, although little is known about the neural functions carried out by dysbindin. To gain some insight into this area, we took advantage of the readily available dysbindin-null mouse sandy (sdy−/−) and studied hippocampal neurogenesis using thymidine analogue bromodeoxuridine (BrdU). No significant differences were found in the proliferation (4 hours) or survival (1, 4 and 8 weeks after the last BrdU injection) of progenitors in the subgranular regions of the dentate gyrus between sdy−/− and sdy+/+ (control) mice. However, 4 weeks after the last BrdU injection, a significant reduction was observed in the ratio of neuronal differentiation in sdy−/− when compared to that of sdy+/+ (sdy+/+  = 87.0±5.3% vs. sdy−/−  = 71.3±8.3%, p = 0.01). These findings suggest that dysbindin plays a role during differentiation process in the adult hippocampal neurogenesis and that its deficit may negatively affect neurogenesis-related functions such as cognition and mood

    Meta-analysis of genome-wide association studies of anxiety disorders.

    Get PDF
    Anxiety disorders (ADs), namely generalized AD, panic disorder and phobias, are common, etiologically complex conditions with a partially genetic basis. Despite differing on diagnostic definitions based on clinical presentation, ADs likely represent various expressions of an underlying common diathesis of abnormal regulation of basic threat-response systems. We conducted genome-wide association analyses in nine samples of European ancestry from seven large, independent studies. To identify genetic variants contributing to genetic susceptibility shared across interview-generated DSM-based ADs, we applied two phenotypic approaches: (1) comparisons between categorical AD cases and supernormal controls, and (2) quantitative phenotypic factor scores (FS) derived from a multivariate analysis combining information across the clinical phenotypes. We used logistic and linear regression, respectively, to analyze the association between these phenotypes and genome-wide single nucleotide polymorphisms. Meta-analysis for each phenotype combined results across the nine samples for over 18 000 unrelated individuals. Each meta-analysis identified a different genome-wide significant region, with the following markers showing the strongest association: for case-control contrasts, rs1709393 located in an uncharacterized non-coding RNA locus on chromosomal band 3q12.3 (P=1.65 × 10(-8)); for FS, rs1067327 within CAMKMT encoding the calmodulin-lysine N-methyltransferase on chromosomal band 2p21 (P=2.86 × 10(-9)). Independent replication and further exploration of these findings are needed to more fully understand the role of these variants in risk and expression of ADs.Molecular Psychiatry advance online publication, 12 January 2016; doi:10.1038/mp.2015.197

    Performance of a computable phenotype for identification of patients with diabetes within PCORnet: The Patient-Centered Clinical Research Network

    Get PDF
    Purpose: PCORnet, the National Patient-Centered Clinical Research Network, represents an innovative system for the conduct of observational and pragmatic studies. We describe the identification and validation of a retrospective cohort of patients with type 2 diabetes (T2DM) from four PCORnet sites. Methods: We adapted existing computable phenotypes (CP) for the identification of patients with T2DM and evaluated their performance across four PCORnet sites (2012-2016). Patients entered the cohort on the earliest date they met one of three CP categories: (CP1) coded T2DM diagnosis (ICD-9/ICD-10) and an antidiabetic prescription, (CP2) diagnosis and glycosylated hemoglobin (HbA1c) ≥6.5%, or (CP3) an antidiabetic prescription and HbA1c ≥6.5%. We required evidence of health care utilization in each of the 2 prior years for each patient, as we also developed an incident T2DM CP to identify the subset of patients without documentation of T2DM in the 365 days before t 0 . Among a systematic sample of patients, we calculated the positive predictive value (PPV) for the T2DM CP and incident-T2DM CP using electronic health record (EHR) review as reference. Results: The CP identified 50 657 patients with T2DM. The PPV of patients randomly selected for validation was 96.2% (n = 1572; CI:95.1-97.0) and was consistently high across sites. The PPV for the incident-T2DM CP was 5.8% (CI:4.5-7.5). Conclusions: The T2DM CP accurately and efficiently identified patients with T2DM across multiple sites that participate in PCORnet, although the incident T2DM CP requires further study. PCORnet is a valuable data source for future epidemiological and comparative effectiveness research among patients with T2DM

    Diabetes medication regimens and patient clinical characteristics in the national patient-centered clinical research network, PCORnet

    Get PDF
    We used electronic medical record (EMR) data in the National Patient-Centered Clinical Research Network (PCORnet) to characterize “real-world” prescription patterns of Type 2 diabetes (T2D) medications. We identified a retrospective cohort of 613,203 adult patients with T2D from 33 datamarts (median patient number: 12,711) from 2012 through 2017 using a validated computable phenotype. We characterized outpatient T2D prescriptions for each patient in the 90 days before and after cohort entry, as well as demographics, comorbidities, non-T2D prescriptions, and clinical and laboratory variables in the 730 days prior to cohort entry. Approximately half of the individuals in the cohort were females and 20% Black. Hypertension (60.3%) and hyperlipidemia (50.5%) were highly prevalent. Most patients were prescribed either a single T2D drug class (42.2%) or had no evidence of a T2D prescription in the EMR (42.4%). A smaller percentage was prescribed multiple T2D drug types (15.4%). Among patients prescribed a single T2D drug type, metformin was the most common (42.6%), followed by insulin (18.2%) and sulfonylureas (13.9%). Newer classes represented approximately 13% of single T2D drug type prescriptions (dipeptidyl peptidase-4 inhibitors [6.6%], glucagon-like peptide-1 receptor agonists [2.5%], thiazolidinediones [2.0%], and sodium-glucose cotransporter-2 inhibitors [1.6%]). Among patients prescribed multiple T2D drug types, the most common combination was metformin and sulfonylureas (63.5%). Metformin-based regimens were highly prevalent in PCORnet's T2D population, whereas newer agents were prescribed less frequently. PCORnet is a novel source for the potential conduct of observational studies among patients with T2D
    corecore