232 research outputs found
Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy
Inflammation in myocarditis induces cardiac injury and triggers disease
progression to heart failure. NLRP3 inflammasome activation is a newly
identified amplifying step in the pathogenesis of myocarditis. We previously
have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in
Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly
inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1β, and IL-18
mRNA expression in CVB3-infected mice. ASC protein expression, essential for
NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated
in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2
expression, NLRP3 inflammasome activation and IL-1β secretion in HL-1 cells,
which was abolished after MSC supplementation. The inhibitory effect of MSC on
NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of
the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in
CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1β-
positive splenic macrophages, natural killer cells, and dendritic cells. The
suppressive effect of MSC on inflammasome activation was associated with
normalized expression of prominent regulators of myocardial contractility and
fibrosis to levels comparable to control mice. In conclusion, MSC treatment in
myocarditis could be a promising strategy limiting the adverse consequences of
cardiac and systemic NLRP3 inflammasome activation
Image based machine learning for identification of macrophage subsets
Macrophages play a crucial rule in orchestrating immune responses against pathogens and foreign materials. Macrophages have remarkable plasticity in response to environmental cues and are able to acquire a spectrum of activation status, best exemplified by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at the two ends of the spectrum. Characterisation of M1 and M2 subsets is usually carried out by quantification of multiple cell surface markers, transcription factors and cytokine profiles. These approaches are time consuming, require large numbers of cells and are resource intensive. In this study, we used machine learning algorithms to develop a simple and fast imaging-based approach that enables automated identification of different macrophage functional phenotypes using their cell size and morphology. Fluorescent microscopy was used to assess cell morphology of different cell types which were stained for nucleus and actin distribution using DAPI and phalloidin respectively. By only analysing their morphology we were able to identify M1 and M2 phenotypes effectively and could distinguish them from naïve macrophages and monocytes with an average accuracy of 90%. Thus we suggest high-content and automated image analysis can be used for fast phenotyping of functionally diverse cell populations with reasonable accuracy and without the need for using multiple markers
Association between celiac sprue and cryopyrin associated autoinflammatory disorders: a case report
Cryopyrin-associated diseases may be characterized by rashes, fever, and sensorineural deafness, while celiac disease may present with symptoms of malabsorption and fatigue. Arthritis is seen in both conditions. We report a young child with histologically diagnosed celiac disease and a cryopyrinopathy
Soluble Immune Complexes Shift the TLR-Induced Cytokine Production of Distinct Polarized Human Macrophage Subsets towards IL-10
Contains fulltext :
109563.pdf (publisher's version ) (Open Access)BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs) and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-gamma, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs). Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MPhi(IL-4). In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2). The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10
Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS)
Malarial Hemozoin Is a Nalp3 Inflammasome Activating Danger Signal
BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria
Malarial Hemozoin Is a Nalp3 Inflammasome Activating Danger Signal
BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria
Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases
The intraerythrocytic parasite Plasmodium—the causative agent of malaria—produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1β (IL-1β). However, the mechanism regulating Hz recognition and IL-1β maturation has not been identified. Here, we show that Hz induces IL-1β production. Using knockout mice, we showed that Hz-induced IL-1β and inflammation are dependent on NOD-like receptor containing pyrin domain 3 (NLRP3), ASC and caspase-1, but not NLRC4 (NLR containing CARD domain). Furthermore, the absence of NLRP3 or IL-1β augmented survival to malaria caused by P. chabaudi adami DS. Although much has been discovered regarding the NLRP3 inflammasome induction, the mechanism whereby this intracellular multimolecular complex is activated remains unclear. We further demonstrate, using pharmacological and genetic intervention, that the tyrosine kinases Syk and Lyn play a critical role in activation of this inflammasome. These findings not only identify one way by which the immune system is alerted to malarial infection but also are one of the first to suggest a role for tyrosine kinase signaling pathways in regulation of the NLRP3 inflammasome
- …
