307 research outputs found

    Prolonging nephrogenesis in preterm infants: a new approach for prevention of kidney disease in adulthood?

    No full text
    Chronic kidney disease represents a dramatic worldwide resourceconsuming problem. This problem is of increasing importance even in preterm infants, since nephrogenesis may go on only for a few weeks (4 to 6 weeks) after birth. Recent literature focusing on traditional regenerative medicine does not take into account the presence of a high number of active endogenous stem cells in the preterm kidney, which represents a unique opportunity for starting regenerative medicine in the perinatal period. Pluripotent cells of the blue strip have the capacity to generate new nephrons, improving kidney function in neonates and potentially protecting them from developing chronic kidney disease and end-stage renal disease in adulthood. There is a marked interindividual neonatal variability of nephron numbers. Moreover, the renal stem/progenitor cells appear as densely-packed small cells with scant cytoplasm, giving rise to a blue-appearing strip in hematoxylin-eosin–stained kidney sections (“the blue strip”). There are questions concerning renal regenerative medicine: among preliminary data, the simultaneous expression of Wilms tumor 1 and thymosin β4 in stem/progenitor cells of the neonatal kidney may bring new prospects for renal regeneration applied to renal stem cells that reside in the kidney itself. A potential approach could be to prolong the 6 weeks of postnatal renal growth of nephrons or to accelerate the growth of nephrons during the 6 weeks or both. Considering what we know today about perinatal programming, this could be an important step for the future to reduce the incidence and global health impact of chronic kidney disease

    Assisted Reproductive Technologies: A New Player in the Foetal Programming of Childhood and Adult Diseases?

    Get PDF
    Assisted reproductive technology (ART) is an emerging field in medicine that incorporates complex procedures and has profound ethical, moral, social, religious, and economic implications not just for the individuals who have access to this method but also for society. In this narrative review, we summarise multiple aspects of ART procedures and the possible consequences on the mother and newborn. Moreover, we provide an overview of the possible long-term consequences of ART procedures on the health of newborns, although longitudinal evidence is particularly scant. Users should be informed that ART procedures are not risk-free to prepare them for the possible negative outcomes that may occur in the perinatal period or even in childhood and adulthood. Indeed, risk estimates point to increased liability for major nonchromosomal birth defects; cardiovascular, musculoskeletal, and urogenital (in male newborns) defects; and any other birth defects. Less certainty is present for the risk of neuropsychiatric sequelae in children conceived through ART. Thus, its application should be accompanied by adequate counselling and psychological support, possibly integrated into specific multidisciplinary clinical programmes

    The Role of Copper Overload in Modulating Neuropsychiatric Symptoms

    Get PDF
    Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer’s disease and Wilson’s disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors’ judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson’s disease. We highlight that Wilson’s disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder

    Stem cells of the maternal milk allow a better development of lactating newborns.

    Get PDF
    Recent findings of stem/progenitor cells in maternal milk and their ability to cross the intestinal barrier of lactating newborns and integrate into neonatal organs to promote optimal child development present a new challenge in perinatal medicine. These findings emphasize the need for all mothers to breastfeed their babies for a long time. According to recent research, breastfeeding protects the lactating newborn from multiple infectious agents that can cause severe and fatal early infancy diseases. The second benefit is that maternal stem cells accelerate the development of several organs, including the brain, protecting lactating infants from severe childhood and adult diseases. The success and diffusion of exclusive breastfeeding, especially in low-resource settings, depends on mothers’ knowledge of the many benefits for their child, including recent discoveries on breastfeeding’s powerful benefits. Every mother may need simple booklets to learn about the unique benefits of maternal breastfeeding, including the nutrients and multiple cell types that protect the newborn from infections and accelerate neonatal organ development. Social media should also be encouraged to spread news about breastfeeding and maternal stem cells’ impact on lactating infants’ health. Health m belief model interventions may boost breastfeeding. In conclusion, the discovery of massive amounts of cells in maternal milk and the identification of stem/progenitors with previously unknown potential in newborn development after birth should be considered a new valuable tool for exclusive breastfeeding advocates. Data here suggests that every action to spread this message and educate mothers and families about breastfeeding’s irreplace-able role is mandatory

    S100B protein expression in the heart of deceased individuals by overdose: a new forensic marker?

    Get PDF
    OBJECTIVE: The evaluation of S100B protein expression in the human heart and its correlation with drug-related death. METHOD: Left ventricular samples were collected from 74 serial forensic autopsies (15 overdose-related deaths; 59 non-overdose-related deaths) from 2007 to 2010. Tissue sections from each sample were immunostained for S100B protein by a commercial antibody. RESULTS: The S100B protein was detected in the heart samples of all 15 cases of drug-related deaths; S100B immunoreactivity was mainly observed in the cytoplasm of cardiomyocytes and as globular deposits in the interstitial spaces. No reactivity or weak reactivity was found in the cardiomyocytes of the 59 subjects who died of other causes. CONCLUSION: Our preliminary data show that the S100B protein accumulates in injured cardiomyocytes during drug-related sudden death. Given the near absence of S100B protein in the heart of subjects who died from causes other than drug overdose, S100B immunopositivity may be used as a new ancillary screening tool for the postmortem diagnosis of overdose-related cardiac death

    Hypoxia/reoxygenation-induced myocardial lesions in newborn piglets are related to interindividual variability and not to oxygen concentration

    Get PDF
    OBJECTIVE: Evaluation of myocardial histological changes in an experimental animal model of neonatal hypoxiareoxygenation. METHODS: Normocapnic hypoxia was induced in 40 male Landrace/Large White piglets. Reoxygenation was initiated when the animals developed bradycardia (HR <60 beats/min) or severe hypotension (MAP <15 mmHg). The animals were divided into four groups based on the oxygen (O2) concentration used for reoxygenation; groups 1, 2, 3, and 4 received 18%, 21%, 40%, and 100% O2, respectively. The animals were further classified into five groups based on the time required for reoxygenation: A: fast recovery (<15 min); B: medium recovery (15-45 min); C: slow recovery (45-90 min); D: very slow recovery (>90 min), and E: nine deceased piglets. RESULTS: Histology revealed changes in all heart specimens. Interstitial edema, a wavy arrangement, hypereosinophilia and coagulative necrosis of cardiomyocytes were observed frequently. No differences in the incidence of changes were observed among groups 1-4, whereas marked differences regarding the frequency and the degree of changes were found among groups A-E. Coagulative necrosis was correlated with increased recovery time: this condition was detected post-asphyxia in 14%, 57%, and 100% of piglets with fast, medium, and slow or very slow recovery rates, respectively. CONCLUSIONS: The significant myocardial histological changes observed suggest that this experimental model might be a reliable model for investigating human neonatal cardiac hypoxia-related injury. No correlation was observed between the severity of histological changes and the fiO2 used during reoxygenation. Severe myocardial changes correlated strictly with recovery time, suggesting an unreported individual susceptibility of myocardiocytes to hypoxia, possibly leading to death after the typical time-sequence of events

    The Quest for the Application of Artificial Intelligence to Whole Slide Imaging: Unique Prospective from New Advanced Tools

    Get PDF
    The introduction of machine learning in digital pathology has deeply impacted the field, especially with the advent of whole slide image (WSI) analysis. In this review, we tried to elucidate the role of machine learning algorithms in diagnostic precision, efficiency, and the reproducibility of the results. First, we discuss some of the most used tools, including QuPath, HistoQC, and HistomicsTK, and provide an updated overview of machine learning approaches and their application in pathology. Later, we report how these tools may simplify the automation of WSI analyses, also reducing manual workload and inter-observer variability. A novel aspect of this review is its focus on open-source tools, presented in a way that may help the adoption process for pathologists. Furthermore, we highlight the major benefits of these technologies, with the aim of making this review a practical guide for clinicians seeking to implement machine learning-based solutions in their specific workflows. Moreover, this review also emphasizes some crucial limitations related to data quality and the interpretability of the models, giving insight into future directions for research. Overall, this work tries to bridge the gap between the more recent technological progress in computer science and traditional clinical practice, supporting a broader, yet smooth, adoption of machine learning approaches in digital pathology
    • …
    corecore