2,971 research outputs found
Experimentally-determined external heat loss of automotive gas turbine engine
An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power
Magnetic-field induced multiferroicity in a quantum critical frustrated spin liquid
Dielectric spectroscopy is used to check for the onset of polar order in the
quasi one-dimensional quantum spin system Sul-Cu2Cl4 when passing from the
spin-liquid state into the ordered spiral phase in an external magnetic field.
We find clear evidence for multiferroicity in this material and treat in detail
its H-T phase diagram close to the quantum-critical regime.Comment: 5 pages, 4 figures. Revised according to suggestions of referee
From LTL and Limit-Deterministic B\"uchi Automata to Deterministic Parity Automata
Controller synthesis for general linear temporal logic (LTL) objectives is a
challenging task. The standard approach involves translating the LTL objective
into a deterministic parity automaton (DPA) by means of the Safra-Piterman
construction. One of the challenges is the size of the DPA, which often grows
very fast in practice, and can reach double exponential size in the length of
the LTL formula. In this paper we describe a single exponential translation
from limit-deterministic B\"uchi automata (LDBA) to DPA, and show that it can
be concatenated with a recent efficient translation from LTL to LDBA to yield a
double exponential, \enquote{Safraless} LTL-to-DPA construction. We also report
on an implementation, a comparison with the SPOT library, and performance on
several sets of formulas, including instances from the 2016 SyntComp
competition
Preliminary trials with optical fiber dosimeters at TTF
Ionizing radiation leads to a degradation of the light transmitting properties of fiber optic cables. These effects usually place restrictions on where they can be used in a particle accelerator facility. These effects can also be used to our advantage, the losses from a particle beam create wavelength dependant increases of attenuation by absorption and scattering which can be measured using Optical Time Domain Reflectometry (OTDR). From these measurements a measure of the radiation dose received can be inferred
Opportunistic Multi-sensor Fusion for Robust Navigation in Smart Environments
Proceedings of: Workshop on User-Centric Technologies and Applications (CONTEXTS 2011), Salamanca, April 6-8, 2011This paper presents the design of a navigation system for multiple autonomous robotic platforms. It performs multisensor fusion using a Monte Carlo Bayesian filter, and has been designed to maximize information acquisition. Apart from sensors equipped in the mobile platform, the system can dynamically integrate observations from friendly external sensing entities, increasing robustness and making it suitable for both indoor and outdoor operation. A multi-agent layer manages the information acquisition process, making it transparent for the core filtering solution. As a proof of concept, some preliminary results are presented over a real platform using the part of the system specialized in outdoor navigationThis work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/ TIC-1485) and DPS2008-07029-C02-02.publicad
Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector
The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice
for the XENON1T dual-phase time projection chamber. The device has been
optimized for a very low intrinsic radioactivity, a high quantum efficiency and
a high sensitivity to single photon detection. A total of 248 tubes are
currently operated in XENON1T, selected out of 321 tested units. In this
article the procedures implemented to evaluate the large number of tubes prior
to their installation in XENON1T are described. The parameter distributions for
all tested tubes are shown, with an emphasis on those selected for XENON1T, of
which the impact on the detector performance is discussed. All photomultipliers
have been tested in a nitrogen atmosphere at cryogenic temperatures, with a
subset of the tubes being tested in gaseous and liquid xenon, simulating their
operating conditions in the dark matter detector. The performance and
evaluation of the tubes in the different environments is reported and the
criteria for rejection of PMTs are outlined and quantified.Comment: 24 pages, 16 figure
Timed Parity Games: Complexity and Robustness
We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions.
The games are \emph{concurrent} in that at each turn, both players
independently propose a time delay and an action, and the action with the
shorter delay is chosen. To prevent a player from winning by blocking time, we
restrict each player to play strategies that ensure that the player cannot be
responsible for causing a zeno run. First, we present an efficient reduction of
these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state}
(i.e., untimed) parity games. Our reduction improves the best known complexity
for solving timed parity games. Moreover, the rich class of algorithms for
classical parity games can now be applied to timed parity games. The states of
the resulting game are based on clock regions of the original game, and the
state space of the finite game is linear in the size of the region graph.
Second, we consider two restricted classes of strategies for the player that
represents the controller in a real-time synthesis problem, namely,
\emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a
limit-robust winning strategy, the controller cannot choose an exact
real-valued time delay but must allow for some nonzero jitter in each of its
actions. If there is a given lower bound on the jitter, then the strategy is
bounded-robust winning. We show that exact strategies are more powerful than
limit-robust strategies, which are more powerful than bounded-robust winning
strategies for any bound. For both kinds of robust strategies, we present
efficient reductions to standard timed automaton games. These reductions
provide algorithms for the synthesis of robust real-time controllers
C58 on Au(111): a scanning tunneling microscopy study
C58 fullerenes were adsorbed onto room temperature Au(111) surface by
low-energy (~6 eV) cluster ion beam deposition under ultrahigh vacuum
conditions. The topographic and electronic properties of the deposits were
monitored by means of scanning tunnelling microscopy (STM at 4.2 K).
Topographic images reveal that at low coverages fullerene cages are pinned by
point dislocation defects on the herringbone reconstructed gold terraces (as
well as by step edges). At intermediate coverages, pinned monomers, act as
nucleation centres for the formation of oligomeric C58 chains and 2D islands.
At the largest coverages studied, the surface becomes covered by 3D interlinked
C58 cages. STM topographic images of pinned single adsorbates are essentially
featureless. The corresponding local densities of states are consistent with
strong cage-substrate interactions. Topographic images of [C58]n oligomers show
a stripe-like intensity pattern oriented perpendicular to the axis connecting
the cage centers. This striped pattern becomes even more pronounced in maps of
the local density of states. As supported by density functional theory, DFT
calculations, and also by analogous STM images previously obtained for C60
polymers (M. Nakaya et al., J. Nanosci. Nanotechnol. 11, 2829 (2011)), we
conclude that these striped orbital patterns are a fingerprint of covalent
intercage bonds. For thick C58 films we have derived a band gap of 1.2 eV from
scanning tunnelling spectroscopy data, STS, confirming that the outermost C58
layer behaves as a wide band semiconductor
Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi
Microplastics are increasingly recognized as a factor of global change. By altering soil inherent properties and processes, ripple-on effects on plants and their symbionts can be expected. Additionally, interactions with other factors of global change, such as drought, can influence the effect of microplastics. We designed a greenhouse study to examine effects of polyester microfibers, arbuscular mycorrhizal (AM) fungi and drought on plant, microbial and soil responses. We found that polyester microfibers increased the aboveground biomass of Allium cepa under well-watered and drought conditions, but under drought conditions the AM fungal-only treatment reached the highest biomass. Colonization with AM fungi increased under microfiber contamination, however, plant biomass did not increase when both AM fungi and fibers were present. The mean weight diameter of soil aggregates increased with AM fungal inoculation overall but decreased when the system was contaminated with microfibers or drought stressed. Our study adds additional support to the mounting evidence that microplastic fibers in soil can affect the plant-soil system by promoting plant growth, and favoring key root symbionts, AM fungi. Although soil aggregation is usually positively influenced by plant roots and AM fungi, and microplastic promotes both, our results show that plastic still had a negative effect on soil aggregates. Even though there are concerns that microplastic might interact with other factors of global change, our study revealed no such effect for drought
- …