43 research outputs found

    Path Relinking in Pareto Multi-objective Genetic Algorithms

    Get PDF
    Path relinking algorithms have proved their efficiency in single objective optimization. Here we propose to adapt this concept to Pareto optimization. We combine this original approach to a genetic algorithm. By applying this hybrid approach to a bi-objective permutation flow-shop problem, we show the interest of this approach. In this paper, we present first an Adaptive Genetic Algorithm dedicated to obtain a first well diversified approximation of the Pareto set. Then, we present an original hybridization with Path Relinking algorithm, in order to intensify the search between solutions obtained by the first approach. Results obtained are promising and show that cooperation between these optimization methods could be efficient for Pareto optimization

    A cooperative metaheuristic applied to multi-objective flow-shop scheduling problem

    Get PDF

    Adaptive mechanisms for multi-objective evolutionary algorithms

    Get PDF

    Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem

    Get PDF
    Multi-objective optimization using evolutionary algorithms has been extensively studied in the literature. We propose formal methods to solve problems appearing frequently in the design of such algorithms. To evaluate the effectiveness of the introduced mechanisms, we apply them to the flow-shop scheduling problem. We propose a dynamic mutation Pareto genetic algorithm (GA) in which different genetic operators are used simultaneously in an adaptive manner, taking into account the history of the search. We present a diversification mechanism which combines sharing in the objective space as well as in the decision space, in which the size of the niche is automatically calculated. We also propose a hybrid approach which combines the Pareto GA with local search. Finally, we propose two performance indicators to evaluate the effectiveness of the introduced mechanism

    Histamine, a vasoactive agent with vascular disrupting potential, improves tumour response by enhancing local drug delivery

    Get PDF
    Tumour necrosis factor (TNF)-based isolated limb perfusion (ILP) is an approved and registered treatment for sarcomas confined to the limbs in Europe since 1998, with limb salvage indexes of 76%. TNF improves drug distribution in solid tumours and secondarily destroys the tumour-associated vasculature (TAV). Here we explore the synergistic antitumour effect of another vasoactive agent, histamine (Hi), in doxorubicin (DXR)-based ILP and evaluate its antivascular effects on TAV. We used our well-established rat ILP model for in vivo studies looking at tumour response, drug distribution and effects on tumour vessels. In vitro studies explored drug interactions at cellular level on tumour cells (BN-175) and Human umbilical vein endothelial cells (HUVEC). There was a 17% partial response and a 50% arrest in tumour growth when Hi was combined to DXR, without important side effects, against 100% progressive disease with DXR alone and 29% arrest in tumour growth for Hi alone. Histology documented an increased DXR leakage in tumour tissue combined to a destruction of the TAV, when Hi was added to the ILP. In vitro no synergy between the drugs was observed. In conclusion, Hi is a vasoactive drug, targeting primarily the TAV and synergises with different chemotherapeutic agents

    Isolated limb perfusion with actinomycin D and TNF-alpha results in improved tumour response in soft-tissue sarcoma-bearing rats but is accompanied by severe local toxicity

    Get PDF
    Previously we demonstrated that addition of Tumour Necrosis Factor-α to melphalan or doxorubicin in a so-called isolated limb perfusion results in synergistic antitumour responses of sarcomas in both animal models and patients. Yet, 20 to 30% of the treated tumours do not respond. Therefore agents that synergise with tumour necrosis factor alpha must be investigated. Actinomycin D is used in combination with melphalan in isolated limb perfusion in the treatment of patients with melanoma in-transit metastases and is well known to augment tumour cell sensitivity towards tumour necrosis factor alpha in vitro. Both agents are very toxic, which limits their systemic use. Their applicability may therefore be tested in the isolated limb perfusion setting, by which the tumours can be exposed to high concentrations in the absence of systemic exposure. To study the beneficial effect of the combination in vivo, BN-175 soft tissue sarcoma-bearing rats were perfused with various concentrations of actinomycin D and tumour necrosis factor alpha. When used alone the drugs had only little effect on the tumour. Only when actinomycin D and tumour necrosis factor alpha were combined a tumour response was achieved. However, these responses were accompanied by severe, dose limiting, local toxicity such as destruction of the muscle tissue and massive oedema. Our results show that isolated limb perfusion with actinomycin D in combination with tumour necrosis factor alpha leads to a synergistic anti-tumour response but also to idiosyncratic locoregional toxicity to the normal tissues. Actinomycin D, in combination with tumour necrosis factor alpha, should not be explored in the clinical setting because of this. The standard approach in the clinic remains isolated limb perfusion with tumour necrosis factor alpha in combination with melphalan

    In vivo isolated kidney perfusion with tumour necrosis factor α (TNF-α) in tumour-bearing rats

    Get PDF
    Isolated perfusion of the extremities with high-dose tumour necrosis factor α (TNF-α) plus melphalan leads to dramatic tumour response in patients with irresectable soft tissue sarcoma or multiple melanoma in transit metastases. We developed in vivo isolated organ perfusion models to determine whether similar tumour responses in solid organ tumours can be obtained with this regimen. Here, we describe the technique of isolated kidney perfusion. We studied the feasibility of a perfusion with TNF-α and assessed its anti-tumour effects in tumour models differing in tumour vasculature. The maximal tolerated dose (MTD) proved to be only 1 μg TNF-α. Higher doses appeared to induce renal failure and a secondary cytokine release with fatal respiratory and septic shock-like symptoms. In vitro, the combination of TNF-α and melphalan did not result in a synergistic growth-inhibiting effect on CC 531 colon adenocarcinoma cells, whereas an additive effect was observed on osteosarcoma ROS-1 cells. In vivo isolated kidney perfusion, with TNF-α alone or in combination with melphalan, did not result in a significant anti-tumour response in either tumour model in a subrenal capsule assay. We conclude that, because of the susceptibility of the kidney to perfusion with TNF-α, the minimal threshold concentration of TNF-α to exert its anti-tumour effects was not reached. The applicability of TNF-α in isolated kidney perfusion for human tumours seems, therefore, questionable. © 1999 Cancer Research Campaig
    corecore