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Abstract - Multi-objective optimization using 
evolutionary algorithms has been largely stu- 
died in the literature. Here, we propose for- 
mal methods to solve some problems appear- 
ing frequently in the design of such algorithms. 
To evaluate the effectiveness of the introduced 
mechanisms, we apply them to the flow-shop 
scheduling problem. We propose a dynamic mu- 
tation Pareto Genetic Algorithm (GA) in which 
different genetic operators are used simultane- 
ously in an adaptive manner, taking into ac- 
count the history of the search. We present a 
diversification mechanism which combines shar- 
ing in the objective space as well as in the de- 
cision space, in which the sue  of the niche is 
automatically calculated. We propose also an 
hybrid approach which combines the pareto GA 
with local search. Finally, we propose two per- 
formance indicators to evaluate t he effectiveness 
of the introduced mechanisms. 

I. Introduction 
The flow-shop problem is one of the numerous 

scheduling problems [16]. This problem has re- 
ceived a great attention since its importance in 
many industrial areas. The proposed methods for 
its resolution vary between exact methods such as 
the branch & bound algorithm, specific heuristics 
and metaheuristics. However, the majority of these 
works study the problem in its single criterion form 
and aim mainly to minimize the makespan. 

The flow-shop problem can be presented as a set 
of N jobs J1, Jz ,  . . . , JN to be scheduled on M ma- 
chines. Machines are critical resources: one ma- 
chine can not be assigned to two jobs simultane- 
ously. Each job J i  is composed of M consecutive 
tasks t i l , .  . . , t i M ,  where t i j  represents the j t h  task 
of the job J, requiring the machine mj. To each 
task t i j  is associated a processing time p i j .  Each 
job J i  must be achieved before the due date d i .  

In our study, we are interested in permutation 
flow-shop problems where jobs must be scheduled 
in the same order on all the machines. We have to 
minimize two objectives: 

Cma, : Makespan (Total completion time), 
0 T : Total tardiness. 
The task t i j  is scheduled at the time s i j .  The 

two objectives can be computed as follow: 
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fi = Cmaz = Max{ S ~ M  + p i ~ l i  E [I . . . N ] }  
N 

f2 = T = Ci=1 [max(O, SiM + P i M  - di)] 
In the R. L. Graham & al. [7] notation this prob- 

lem can be defined by F/perm, d i / ( C ; n a z ,  T ) .  
This problem is NP-hard. It cannot be solved 

by exact methods for medium and large instances. 
The number of feasible solutions, for a N * M pro- 
blem instance, is N !  solutions. 

As many works on multi-objective optimization, 
the flow-shop scheduling problem set some difficul- 
ties. Here we try to design mechanisms to answer 
these difficulties and we apply those mechanisms 
to an existent algorithm previously proposed in 
our research group [15]. We also introduce per- 
formance indicators to evaluate the effectiveness of 
those mechanisms. 

11. An Adaptive Pareto Genetic Algorithm 
Whatever the problem, there exists many muta- 

tion and crossover operators. Many tests must be 
done on each operator in order to know its effective- 
ness. Moreover, the efficiency of an operator may 
change during the algorithm: an operator may offer 
a better convergence at the beginning of the GA, 
but this convergence may stop earlier than with 
another operator. The success of an operator may 
also depend on the instance of the problem. 

So, we are interested in an adaptive Pareto GA, 
in which the choice of the operator is done dyna- 
mically during the search. In this work, we have 
applied the proposed mechanism to mutation op- 
erators. The goal of our method is to use simul- 
taneously several mutation operators during the 
GA, and to change their ratio according to evalua- 
tion results from the respecting offsprings it pro- 
duces. So the algorithm always uses the best op- 
erator more often than the other operators. This 
approach has already been used for mono-objective 
problems [8]. We have adapted this method to 
multi-objective optimization, as described below: 

1. Create an initial population of individuals. 
Assign to each mutation operator M I ,  . . . , M,, 
the same ratio PM; = l / (n  *pmuta t ion)  (n is the 
number of mutation operators and p m u t a t i o n  the 
mutation ratio). 

2. Apply the GA. Mutation operators are se- 
lected in respect to their selection ratios. 
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3. Evaluate the fitness of each solution before 

4. For each mutation operator Mi, compute his 

5. According to the values of Progress(Mi), ad- 

6. Return to step 2. 

and after applying the mutation. 

average growth value Progress(M,). 

just the P M ~ .  

MI 

A similar algorithm could be defined with other 
operators (crossover, local search, etc.). 

1 1  4 1  6 I 0.23 

The progress of a mutation operator Mi applied 
on a solution I is: 

M2 
M? 

0 if I is dominated by IM; 

3 otherwise 
1 if I dominates I M ~  

0 0 7 0.05 
3 7 1 0.43 

where I M ~  is the solution after mutation. 
Progress(Mi) is the average progress of I I ( I M ~ )  
computed with each solution modified by the mu- 
tation Mi. IlMill is the number of times where Mi 
is applied: 

c N r M i  1 
llMi II Progress( Mi) = 

We also adjust the P M ~  ratios according to the 
values of Progress(Mi). In order to keep each ope- 
rators, we use a value 6, which indicates the mini- 
mal ratio value of each operator: 

Table I presents an example where we consider 
four mutation operators and compute their new 
mutation ratio according to their progress. Let S' 
be the solution obtained by applying a mutation 
Mi on a solution S.  If S' dominates S we note 
S' > S, if S dominates S' we note S' < S ,  else we 
note S N S'. This example shows that the muta- 
tion M3 give better results than other operators, so 
we give to this mutation the best ratio for the next 
generation. 

TABLE I 
EXAMPLE OF P&fi COMPUTATION (6 = 0.05) 

Application to the Flow-Shop Problem 
The coding used for the chromosomal represen- 

tation of a solution is a permutation of jobs. A 
position of a job defines his scheduling order. For 
our application, we consider two mutation opera- 
tors. The first operator is an exchange between two 
jobs (Fig. 1). The second one, the insertion oper- 
ator, consists in choosing randomly two points of 
the chromosome, and make a circular permutation 
between these points (Fig. 2 )  [ll]. 
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I 
point 2 

I 
Point I 

Fig. 1. Exchange operator 

Point I 

Fig. 2. Insertion operator 

For the flow-shop problem, we observe that the 
insertion operator ratio performs better than the 
exchange operator ratio when the search is ad- 
vanced, in many benchmarks. Experiments show 
that the adaptive algorithm performs better than 
the algorithm with only one operator (section V). 

111. Diversification 
In classical GAS, we can usually observe a diver- 

sity loss of the population, also called genetic drift. 
To face this drawback, many methods have been 
introduced: introduction of new randomly gener- 
ated individuals, stochastic universal sampling [l], 
distance maintaining [14], crowding [14], neighbor- 
hood restriction [5] or sharing [6]. 

Here, we are interested in sharing which is used 
in many multi-objective GAS. In classical GAS, 
the solutions with best fitness are selected more 
often than the solutions with worst fitness. The 
sharing principle consists in the degradation of the 
fitness of individuals belonging to search regions 
with a high concentration of solutions. This process 
has the effect to favor the solutions diversity in the 
search space. The degradation of the fitness of an 
individual is realized thanks to a function sh called 
sharing function. The new fitness f'(z) is equal to 
the original fitness f divided by the sharing counter 
m ( x )  (niching counter) of the individual: 

f'(z) = with m(z) = &Epop sh(dzst(z, y)) 

Let d be the distance between x and y. The 
sharing function sh is defined as follows: 

if d < u s h a r e  
d 

u s h o v e  

sh(d) = { :-- otherwise 

The constant u s h a r e  designates the non- 
similarity threshold (niche size), i.e the distance 
from which two individuals x and y are not con- 
sidered as belonging to the same niche. We can 
observe two different sharing, depending on how 
the distance between two individuals is computed. 

Sharing function can be computed in the deci- 
sion space, i.e the chromosomal representation of 
an individual. So, the distance dl  between two s e  
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lutions x and y is the minimal number of mutations 
we must applied on x to have y. 

This function can be computed too in the objec- 
tive space, i.e fitness of individuals. The distance 
dz is equal to Ifi(2) - fi(?/)I + If2(2) - fz(Y)I. 

Here we use a combination of these two ap- 
proaches [12], [14]. The function sh takes the fol- 
lowing form: 

where 01 and ~2 are respectively the phenotypic 
and genotypic niche sizes, and dl and dz are re- 
spectively the phenotypic and genotypic distance 
between two solutions x and y. 

Computation of u s h a r e  in objective space 
The effectiveness of the sharing principle mainly 

depends on the parameter ushare  which must be 
set carefully. In fact, diversification becomes ineffi- 
cient with a low value of u s h a r e ,  but the progression 
speed of the front become too small when this value 
is too high. So, to  obtain a good diversification, we 
have to  make tests on each instance of problem to 
find a good approximation of o,hare,  and this value 
must be set for each objective. 

Some works propose methods to  approximate 
Ushare -  Some rough guidelines for setting these pa- 
rameters in single-objective cases are given by K. 
Deb [3]. He suggests fixing oshare at  some known 
minimal separation between desired optima. Horn 
applied this mechanism to the multi-objective case 
[9] where ushare  must be computed to spread solu- 
tions over all the Pareto front, with the hypothe- 
sis that the solutions are ideally distributed on the 
front. 

Let N be the population size. So, we can have 
an approximation of Ushare area: 

where A r e u , i c h e [ ~ s h a r e ]  is the area of the inter- 
section of a niche and the Pareto front. In a 
n-dimensional space volume, a niche is a hyper- 
sphere of dimension n and the Pareto front is a 
space of dimension n-1. Then their intersection is a 
space of dimension n-1 which can be approximated 
by ( f l & a r e ) n - l .  so, in two dimensions, Ushare M 

Fonseca & Al. [4] approximated Areapareto by a 
hyper-cube of dimension n defined by the extreme 
values of the front (Fig. 3). The front area is less 
than half of the hyper-cube surface. 

We consider that the computation of the distance 
is based on Euclidian distance. Mj and mj are 

A T e a p a r e t o l N -  
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Fig. 3. Space occupied by the front approximated by 
an hyper-cube: Example with three objectives 

respectively the maximum and the minimum value 
for the objective j. Then the maximum bound for 
this area is: 

A r e a p a , e t o  I Cy=l n,"=l,j+i(Mj - mj) 

The lower bound is the hypotenuse connecting 
the extreme values. Then in two dimensions, we 
have: 

When n 2 3, the lower bound approximation is 
more difficult. So, when n >_ 3, we use only the 
upper bound of Areapareto to approximate u s h a r e :  

In two dimensions, we have an upper and a lower 
bound for the surface occupied by the front: 

We consider that the objectives are normalized 
between 0 and 1. So, we have two approximations 
for u s h a r e :  2/N and &IN. 

For our application, we use the Manhattan dis- 
tance notion. This distance has been chosen to 
favor a diagonal front [9] and to simplify the com- 
binatorial complexity of our algorithm. So, with 
normalized values of the front, Areapareto is a con- 
stant equal to 2 (the Manhattan distance between 
the point (0,l) and the point (1,O)).  So, we take 
2/N as value Of u s h a r e .  

In our application, we use combined sharing and 
the automatic computation of u s h a r e .  Results show 
that the set of solutions obtained are more diversi- 
fied, and the space explored is larger than without 
these mechanisms (section V). 

IV. An Hybrid Approach 
In our initial study of the flow-shop problem [15], 

we combined GA with local search in order to refine 
the search. The idea is first to  run the GA in or- 
der to get a first approximation of the Pareto fron- 
tier and then to apply a local search on every non- 
dominated solution. The local search has the merit 
to improve the solutions, but the progresses real- 
ized appears only for problems of important size. 
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Our idea is to hybridize our GA by a memetic 
algorithm. The memetic algorithm we use is similar 
to a GA, but its mutation operators are replaced 
by a heuristic. The heuristic we use is a complete 
local search in order to keep the advantages of the 
GA (exploration) and to accelerate the algorithm 
convergence. 

(good approximation 
of the search space) 

~ 

Memetic Algorithm 
(fast convergence of the solutions 

with good exploitation of the Pareto 
frontier obtained by the GA) 

Local 
Search 

Fig. 4. GA + Memetic algorithm: the method 

The effect of memetic algorithm on the Pareto 
front obtained by the GA is schematized on Fig. 5. 

Solution after 
memetic search 

Fig. 5. GA + Memetic method: the effect 

The convergence is very fast with this type of 
memetic algorithm, but each generation of the al- 
gorithm takes a long time in comparison to the time 
taken by a single GA generation. So, we suggest to 
realize only a few generations of memetic search 
after the GA (Fig. 4). 

Results obtained on the flow-shop scheduling 
problem show that the memetic method applied 
after a GA offers better results than only the GA 
or memetic search. Results obtained on many ins- 
tances show the effectiveness of this mechanism 
(section V). 

GAS progression is too slow when solutions be- 
come good. Hybridization by local search offers 
a fast convergence, but the Pareto population are 
not really exploited. This mechanism offers a fast 
convergence with a good exploitation of the Pareto 
population. 

V. Performance Evaluation 
The evaluation of the performance of the algo- 

rithm has been realized on some Taillard bench- 
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marks [13], extended to the bi-objective case [15]'. 
We have evaluated our previous algorithm on the 
same benchmarks. The table I1 describes the re- 
sults obtained: 

0 Problem is the instance treated. 
0 Dam is the dimension of the problem. N x M  
denotes an instance of the flow-shop problem 
with N jobs and M machines. 

0 NB gen is the number of generations of the 
algorithms made. 

0 UB is the upper bound obtained for the Make- 
span in single-objective studies. 

0 M I  and TI are the best Makespan and Tardi- 
ness obtained by the basic algorithm. 

0 M2 and T2 are the best Makespan and Tardi- 
ness obtained with the introduced mechanisms. 
Devl and Dev2 are the deviation of the two 

algorithms regarding UB. 
For the Makespan, we obtain the same devi- 

ation than our previous algorithm for the three 
first instances, but we improve it for the other ins- 
tances. Our deviation fluctuates between 0% and 
1.19%. According to the tardiness, we improve 
our previous results for all the instances except 
ta-20-20-01. 

These results give us an idea on the progress 
made, but only on the extremities of the front. 
Proper comparison of two multi-objective opti- 
mization algorithms is a complex issue. Several dif- 
ferent solutions have been proposed in recent years. 
Solutions quality can be assessed in different ways. 
Some approaches compare the obtained front with 
the true Pareto front [17]. Others approaches eva- 
luate a front with a reference point [lo] .  Some per- 
formance measures dont use any reference point or 
front to evaluate an algorithm [MI. 

Here, we have to  compare two different algo- 
rithms, without knowning the true Pareto front. 
We propose two complementary types of perfor- 
mance indicators: the contribution and the en- 
tropy. The contribution indicator quantifies the 
domination between two sets of non-dominated so- 
lutions. The entropy indicator gives an idea about 
the diversity of the solutions found. 

Contribution 
The contribution of a set of solutions PO1 re- 

latively to  a set of solutions PO2 is the ratio of 
non-dominated solutions produced by POI .  

0 Let C be the set of solutions in PO1 n P02. 
0 Let W1 (resp. W2) be the set of solutions in 
PO1 (resp. P02)  that dominate some solutions 
of PO2 (resp. POI) .  

0 Let L1 (resp. L2)  be the set of solutions in 
PO1 (resp. POZ) that are dominated by some 
solutions of PO2 (resp. POI) .  

The bi-objective benchmarks and the results obtained are 
available on the web (http://www.lifl.fr/Nbasseur). 
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- - -  
ta-50-5-01 
ta-50-10-01 
ta-50-20-01 

Let N1 (resp. N2) be the other solutions of 
PO1 (resp. PO2): Ni = POi \ (C u Wi U Li). 

0 Let PO* be the set of Pareto solutions of POIU 
PO2 so, I P O *  I I = I I CII + I I Wl I I + llN1 I I + I I  W2 I I + 
llN211. 

The contribution of the algorithm PO1 relatively 
to PO2 is stated as2: 

50x5 200000 2724 2735 0.4% 2729 0.18% 3629 3364 
50x10 200000 3037 3126 2.93% 3063 0.85% 6653 4636 
50x20 300000 3886 3990 2.67% 3933 1.19% 11379 7667 

For example, we evaluate the contribution of the 
two sets of solutions PO1 of PO2 of Fig. 6: solu- 
tions of PO1 (resp. POn) are represented by circles 
(resp. crosses). We have C(PO1, POZ) = 0.7 and 
C(P02, P O I )  = 0.3. 

Problem I 
ta 20 10 01 1 

Fig. 6. Example of contribution (C=4, w1=4, Wz=O, 
N=l, N F l )  

Entropy 
Let PO1 and PO2 be two sets of solutions. 

Let PO* be the set of optimal Pareto solutions 
of PO1 u P02. 

0 Let Ni be the cardinality of solutions of PO1 U 
PO* which are in the niche of the i th solution 
of PO1 U PO*. The size of the niche is defined 
in section 111. 

Let ni be the cardinality of solutions of PO1 
which are in the niche of the ith solution of 
PO1 u PO*. 

0 Let C be the cardinality of the solutions of 
PO1 u PO*. 

0 Let y = & be the sum of the coeffi- 
cients affected to each solution. The more con- 
centrated is a region of the solution space, the 
lower will be the coefficients of its solutions. 

2Let us remark that C(P01/POz)  + C(POz/PO1) = 1. 

Contribution Entropy 1 

0.19 I 0.81 0.79 I 0.96 
PIlP2 I P2lPl PlIP2 I P2IPl 

Then, the following formula is applied to evalu- 
ate the entropy E of POI, relatively to the space 
occupied by PO*: 

The two previous indicators have been applied 
to the fronts PI obtained with the previous algo- 
rithm and our fronts obtained with the introduced 
mechanisms P2 (Table 111). These tests show that 
the contribution and the entropy of P2 are always 
better than our previous results. In particular, our 
contribution reaches 1 for instances with 50 jobs. 

ta-20-10-02 11 &I; 1 CIMl 1 0.88 1 0.92 
ta-20-20-01 0.79 0.97 
ta-50-5-01 0.72 0.94 
ta-50- 10-01 0.76 0.97 
ta 50 20 01 0 0.70 0.96 

TABLE I11 
PERFORMANCE EVALUATION ( MULTI-OB JECTIVE 

INDICATORS) 

Convexity 
We also evaluate the interest of the Pareto ap- 

proach by analyzing the landscape of the Pareto 
front in terms of convexity. In fact, it is well 
known that aggregation approaches generate only 
supported solutions i.e those which are on the con- 
vex hull of the set of solutions (Fig. 7). 

We compute the part of supported solutions ob- 
tained on each front PO* (Table IV, with S the 
set of solutions which are on the convex hull of 
PO*). The convex hull is computed by incremen- 
tal method whose complexity is O(p.Zog(p)) where 
p is the number of solutions [2]. 

The proportion of supported solutions is small. 
This show that we may loose a large part of Pareto 
optimal solutions by solving the flow-shop schedu- 
ling problem with an aggregation approach. 

0-7803-72824/02/$10.00 02002 lEEE 1155 

Authorized licensed use limited to: INRIA. Downloaded on June 10,2021 at 13:48:05 UTC from IEEE Xplore.  Restrictions apply. 



I n 

Fig. 7. Convexity 

TABLE IV 
CONVEXITY OF THE SET OF SOLUTIONS OBTAINED 

WITH OUR ALGORITHM 

VI. Conclusion and Perspectives 
In this study, we have introduced general mecha- 

nisms for multi-objective optimization. We have 
proposed an Adaptive Pareto Genetic Algorithm 
where: 

0 Different genetic operators are used simultane- 

0 A combined sharing is applied as well in the 

0 The size of the niche in the objective space is 

An hybrid approach combining Pareto GA 

Moreover, we have introduced two indicators 
adapted to the performance evaluation of multi- 
objective optimization algorithms: contribution 
and entropy. 

The proposed approach has been tested success- 
fully on flow-shop scheduling problems. 

Interest of each mechanism is showed on the web 
at http://www.lifl.fi/Nbasseur. 

The mechanisms defined here will be included in 
the PARADISE0 platform, which is a parallel and 
distributed object-oriented programming environ- 
ment for multi-objective optimization developed by 
our research group. 

Another perspective of this work is a more gen- 
eral study of landscape (convexity, continuity, ...) 
of multi-objective problems to adapt the design of 
such algorithms to the instance of the problem. 
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