515 research outputs found

    On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities

    Get PDF
    We study a non-local variant of a diffuse interface model proposed by Hawkins--Darrud et al. (2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn--Hilliard equation coupled to a reaction-diffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which are the non-local analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015). Furthermore, we establish existence of weak solutions for the case of degenerate mobilities and singular potentials, which serves to confine the order parameter to its physically relevant interval. Due to the non-local nature of the equations, under additional assumptions continuous dependence on initial data can also be shown.Comment: 28 page

    Trajectory attractors for the Sun-Liu model for nematic liquid crystals in 3D

    Full text link
    In this paper we prove the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik) for a nonlinear PDE system coming from a 3D liquid crystal model accounting for stretching effects. The system couples a nonlinear evolution equation for the director d (introduced in order to describe the preferred orientation of the molecules) with an incompressible Navier-Stokes equation for the evolution of the velocity field u. The technique is based on the introduction of a suitable trajectory space and of a metric accounting for the double-well type nonlinearity contained in the director equation. Finally, a dissipative estimate is obtained by using a proper integrated energy inequality. Both the cases of (homogeneous) Neumann and (non-homogeneous) Dirichlet boundary conditions for d are considered.Comment: 32 page

    Phenomenological theory of the s-wave state in superconductors without an inversion center

    Get PDF
    Abstract.: In materials without an inversion center of symmetry the spin degeneracy of the conducting band is lifted by an antisymmetric spin orbit coupling (ASOC). Under such circumstances, spin and parity cannot be separately used to classify the Cooper pairing states. Consequently, the superconducting order parameter is generally a mixture of spin singlet and triplet pairing states. In this paper we investigate the structure of the order parameter and its response to disorder for the most symmetric pairing state (A1). Using the example of the heavy Fermion superconductor CePt3Si, we determine characteristic properties of the superconducting instability. Depending on the type of the pairing interaction, the gap function is characterized by the presence of line nodes. We show that this line nodes move in general upon temperature. Such nodes would be essential to explain recent low-temperature data of thermodynamic quantities such as the NMR-T1 -1, London penetration depth, and heat conductance. Moreover, we study the effect of (non-magnetic) impurity on the superconducting stat

    Broadband light sources based on InAs/InGaAs metamorphic quantum dots

    Get PDF
    We propose a design for a semiconductor structure emitting broadband light in the infrared, based on InAsquantum dots(QDs) embedded into a metamorphic step-graded InxGa1−xAs buffer. We developed a model to calculate the metamorphic QD energy levels based on the realistic QD parameters and on the strain-dependent material properties; we validated the results of simulations by comparison with the experimental values. On this basis, we designed a p-i-n heterostructure with a graded index profile toward the realization of an electrically pumped guided wave device. This has been done by adding layers where QDs are embedded in InxAlyGa1−x−yAs layers, to obtain a symmetric structure from a band profile point of view. To assess the room temperature electro-luminescenceemission spectrum under realistic electrical injection conditions, we performed device-level simulations based on a coupled drift-diffusion and QD rate equation model. On the basis of the device simulation results, we conclude that the present proposal is a viable option to realize broadband light-emitting devices

    Produção de sementes de guandu.

    Get PDF
    bitstream/CPPSE/17295/1/Documentos69.pd

    Modelling of broadband light sources based on InAs / INxGA1-xAS metamorphic quantum dots

    Get PDF
    We propose a design for a semiconductor structure emitting broadband light in the infrared, based on InAs quantum dots (QDs) embedded into a metamorphic 4-step-graded InxGa1- xAs buffer with x = 0.10, 0.20, 0.30, 0.40. We developed a model to calculate metamorphic QD energy levels based on realistic QD parameters and on strain-dependent material properties: results of simulations were validated against experimental values. By simulating the broadband metamorphic structure, we demonstrated that its light emission can cover the whole 1.0 - 1.7 μm range with a bandwidth of 550 nm at 10K. The emission spectrum was then assessed under realistic electrical injection conditions, at room temperature, through device-level simulations based on a coupled drift-diffusion and QD dynamics model. As metamorphic QD devices have been already fabricated with satisfying performances we believe that this proposal is a viable option to realize broader band light-emitting devices such as superluminescent diodes

    A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability.

    Get PDF
    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated
    corecore