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We propose a design for a semiconductor structure emitting broadband light in the infrared, based

on InAs quantum dots (QDs) embedded into a metamorphic step-graded InxGa1�xAs buffer. We

developed a model to calculate the metamorphic QD energy levels based on the realistic QD pa-

rameters and on the strain-dependent material properties; we validated the results of simulations by

comparison with the experimental values. On this basis, we designed a p-i-n heterostructure with a

graded index profile toward the realization of an electrically pumped guided wave device. This has

been done by adding layers where QDs are embedded in InxAlyGa1�x�yAs layers, to obtain a sym-

metric structure from a band profile point of view. To assess the room temperature electro-

luminescence emission spectrum under realistic electrical injection conditions, we performed

device-level simulations based on a coupled drift-diffusion and QD rate equation model. On the ba-

sis of the device simulation results, we conclude that the present proposal is a viable option to real-

ize broadband light-emitting devices. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4945436]

I. INTRODUCTION

Recently, there is an increasing interest in the use of

InAs quantum dots (QDs) for broadband light sources in the

infrared: superluminescent diodes (SLDs) based on QDs

have been fabricated for medical applications such as

Optical Coherence Tomography (OCT).1–4 To increase the

spectral bandwidth, it is necessary to engineer the energy

levels of QDs.1 One of the most successful methods involves

the use of InGaAs capping layer that causes a reduction of

band discontinuities and QD strain; this has allowed to red-

shift the emission of QDs in the 1.3 lm range at room tem-

perature (RT) and to increase the emission bandwidth up to

170 nm.5,6 Chirped dot-in-a-well structure was also proposed

to achieve broadband emission7,8 by tailoring the composi-

tion of the InGaAs quantum well (QW) or the thickness of

the cap layer; broad optical spectra at 1.55 lm were achieved

with quantum dashes exploiting both the ground state (GS)

and excited state (ES) emission.9 InAs QDs deposited on

InGaAs metamorphic buffers (MBs), i.e., metamorphic QDs,

are very interesting structures. Indeed, this approach has

been demonstrated as very successful in shifting the light

emission of InAs QDs to 1.3 lm and 1.55 lm and even

beyond this value;10–13 recently, such nanostructures have

been demonstrated as effective single photon sources in the

telecom range.14–16 In addition, devices based on metamor-

phic QDs have been fabricated with satisfying performan-

ces.17–19 It is hence noteworthy that the presence of

structural defects, known to be present in the MB, did not

forbid the fabrication of performance devices not limited to

light emitting sources: metamorphic solar cells,20 metamor-

phic high-mobility transistors,21,22 and metamorphic optical

amplifiers.23

In recent years, we have demonstrated that metamorphic

QDs are very flexible nanostructures from a design point of

view, as they provide several degrees of freedom to control

properties of interest:24 as an example, this allowed to reach

RT emission up to 1.59 lm.13 It is also worth noticing that

the QD density in these nanostructures is usually higher than

in structures where InAs QDs are deposited over GaAs,

reaching values as high as 1011 cm�2.25

In this work, we propose a RT broadband light source

with a large bandwidth based on metamorphic InAs QDs.

We study two different structures: structure (A) has QDs

inserted into a 4-step graded InxGa1�xAs MB with x¼ 0,

0.10, 0.20, 0.30, 0.40, and it is studied to demonstrate the

capability of this approach of tuning the QD emission over a

broad spectral range;26 structure (B) is a symmetric structure

(from a band profile point of view) obtained by adding

In0.30AlyGa0.70�yAs layers lattice-matched to structure (A)

and with Al compositions y selected to give the same energy

gaps of InxGa1�xAs layers with x< 0.30. To sustain this pro-

posal, we rely on (i) calculations of the confined QD levels,

carried out with the TiberCAD software27,28 using realistic

experimental input parameters for nanostructures and materi-

als, and (ii) by using calculated band-structure from (i), we

simulate a realistic electrical device operating at RT, where

the QD layers are inserted in the intrinsic region of a p-i-n
heterojunction. The simulator used in part (ii) is a physics-

based model coupling drift-diffusion equations for bulk car-

riers and phenomenological rate equations (REs) for QDs.

This model, developed by some of us,29,30 is a unique tool

for the analysis of semiconductor devices with embedded

QD layers because it accounts, via QD rate equations, the

actual nature of the QD carrier dynamics without making use

of the simplified equivalent models of the QD layers. In this

way, we can precisely analyse how the de-synchronized31

electron and hole dynamics in the QDs and the different

transport of electrons and holes in the barrier produce a

0021-8979/2016/119(14)/143102/8/$30.00 VC 2016 AIP Publishing LLC119, 143102-1
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non-uniform carrier filling of the different QD layers, thus

impacting the broadband optical properties. Whereas such

an analysis was previously carried on in broadband QW opti-

cal devices,32 this is the first time this study is carried on in

p-i-n QD junctions with “chirped” QD layers. In all of these

broadband chirped structures, the non-uniform carrier filling

of the various chirped layers is indeed relevant issue that sig-

nificantly limits the broadband performance of the devices.33

For the simulations of quantum levels, we calculated the

values of strain for each layer of the step-graded InGaAs

MB, in order to have reliable input parameters for InAs/

InGaAs mismatch values and band discontinuities. The val-

ues predicted by the model were validated against the avail-

able experimental data, providing a good confidence in the

present calculation.

The QD energy levels and structure band profiles for

structure (B) are then used to simulate realistic devices oper-

ating at RT, where the QD layers are inserted in the intrinsic

region of a p-i-n heterojunction. Preliminary electrolumines-

cence (EL) spectra were presented in Ref. 26 for a p-i-n

device based on structure (A), with GaAs on the bottom

p-side and with In0.3Al0.29Ga0.41As on the top n-side, lattice

matched to the MB, and with an energy gap equal to GaAs.

The analysis carried on in Ref. 26 evidenced that, under

realistic electrical injection conditions at room T, transport

through the ladder-like bands (typical of structure A) favours

QD filling in the lower gap metamorphic layers, thus allow-

ing a rather irregular broadband EL spectrum at RT. In this

paper, we improve the design of this structure by further en-

gineering the metamorphic epilayer structure with the aim at

realizing a symmetric graded index structure allowing for

electrical and optical confinements (structure B).

II. DESIGN OF THE BROADBAND EMISSION
METAMORPHIC QD LAYERS

In Figure 1, we show a schematic of the proposed struc-

ture (A) where InAs QDs are embedded in the middle of

each layer of the 4-step graded InGaAs metamorphic buffer,

including a first layer of QDs embedded in GaAs. For this

grading profile, we calculated the values of strain on the

basis of the model by Romanato et al.,34,35 without taking in

consideration the presence of QDs.

The mismatch between the epitaxial layer and the sub-

strate is defined as

f ¼ ðaMBðtÞ � a0Þ=a0; (1)

where a0 is the GaAs lattice parameter and aMB(t) is the MB

lattice parameter; assuming Vegard’s rule, f is proportional

to the composition, f¼ 0.071 x.

We define T as the total thickness of MB of 400 nm and

t0 the thickness of the strain-relaxed region, above which the

layer is free of misfit dislocations. We then followed the

analysis of Ref. 34, by applying the relation

½f ðt0Þ � feq�2ðT � t0Þ ¼ K; (2)

where feq is the average mismatch of InGaAs layers at points

T and t0, f(t0) is the mismatch at t0 and K a given constant of

3.7 � 10�3 nm for InGaAs material.35 From (2), we derived

the value of T� t0 of 135 nm for the step-graded InGaAs MB.

The strain e¼ [aMB(x)� afree(x)]/afree(x), with afree(x)
the free standing lattice parameter of InxGa1�xAs, profile

in the MB is 0 for 0< t� t0 and [f(t0)� f(t)] for t0< t�T

(Fig. 1, left). This results in having a full strain relaxation in

layers with x¼ 0.10, 0.20, and 0.30, while only the last layer

with x¼ 0.40 is strained, with e¼�0.7%. The lattice param-

eter aMB(x) for each step of the MB can be derived, corre-

sponding to the free standing value for all layers, except for

the x¼ 0.40 layer where the value corresponds to aMB

(x¼ 0.30).

Once the exact values of x and aMB(x) were derived,

they were used as input parameters for the calculation of QD

ground levels in each grading step.

For this, we used the multiscale simulation software

TiberCAD, already successfully used to simulate the optical

properties of semiconductor low-dimensional nanostruc-

tures.36–38 The calculation of strain in lattice mismatched

heterostructures is based on the linear elasticity theory of sol-

ids39 by minimizing the elastic energy of the system. This

approach is suitable from a computational point of view, and

the results can be easily included in a k�p model.

FIG. 1. Schematics of the metamorphic structure (A) (left) and dependence of composition x and strain e of on the thickness the InGaAs step-graded MB

(right). The dotted line indicates the separation between the strain-relaxed and compressed regions (see discussion in the text).
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Quantum mechanical models based on the envelope

function approximation (EFA) are used for the calculation of

eigenstates of confined particles in QDs, by constructing the

Hamiltonian of the system in the framework of the single-

band and multiband k�p theory.

The simulated three-dimensional model includes an

InAs QD with truncated conical shape, with a ratio of 3

between the base and top diameters: the values were taken

from the experimental data available for the InAs QDs

grown on the metamorphic InGaAs buffers.25 The InAs wet-

ting layer (WL) was also taken into consideration, using pa-

rameters depending on the InxGa1�xAs metamorphic layer

properties.25,40 Strain calculations have been performed

assuming as a substrate material the InGaAs MB layer with

the previously derived lattice constants. The strain tensor

components of each QD, induced by the mismatch fQD

between the QD and the InGaAs MB, defined as

fQD ¼ ðaInAs � aMBðxÞÞ=aMBðxÞ (3)

are obtained and fed in the TiberCAD quantum model. The

calculated deformation potentials were applied to InAs

bands, while for energy gaps of InGaAs metamorphic

layers, we followed the approach of Ref. 40 by taking into

consideration the amount of strain as deduced by relations

(2) and (1). The Schroedinger equation is then solved by a

single-band, effective-mass approach for electrons and a

6 bands k�p approach for holes: the effective mass approxi-

mation for electrons is considered satisfying when QD

ground states calculation is needed, as in this case.41 An im-

portant parameter is the value Qc¼DEc/DEv of band dis-

continuities between the InAs QDs and InGaAs MBs: for

the InAs/GaAs system, Qc¼ 0.80 is recommended.42,43

Recently, it has been shown that this value stands also for

GaAs/InGaAs heterostructures with the strained InGaAs.44

The effective mass for electrons depends on the strain;

hence, a modified value is necessary for QDs: we followed

Refs. 42 and 43 taking a value of 0.022 m0. All other rele-

vant parameters for the InxGa1�xAs material were taken

from Ref. 45, also considering the presence of bowing

parameters.

In Figure 2, we show the color map of the strain magni-

tude and the profile of bands along the growth direction of

the metamorphic InAs QDs embedded in a relaxed

In0.20Ga0.80As layer. In Figure 3, we show a calculated band

profile of the complete structure (A).

For a confident validation of the model, we compared

the predicted values of the calculated QD ground state transi-

tion energies against experimental peak PL emission ener-

gies, also for structures with the InAlAs barriers. In Figure 4,

we show a comparison of 10 K PL data, taken from Refs. 12,

13, and 46 and model calculations; a reduction of 20 meV in

this latter value was considered to take into consideration the

excitonic effects of the experimental emission energies.

From Figure 4, the good agreement between the model and

FIG. 2. (Left) Strain map of a simulated InAs QD embedded in In0.20Ga0.80As metamorphic layers. (Right) Band profile for the same structure along the

growth direction (vertical axis of left figure).

FIG. 3. Conduction (blue) and valence (red) energy bands for structure (A)

of Fig. 1 along the growth direction. Calculated energy levels for electrons

(cyan) and heavy holes (purple) confined in QDs (squares) and WL (lines)

are indicated.
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experimental values is evident, with discrepancies never

larger than 20 meV, a value fully accounted for by the exper-

imental uncertainties in the AFM measurement of QD

dimensions and in experimental calibration of x, indicated by

the error bars.46,47 It should be stressed that there are no free

parameters in this model to be adjusted. The asymmetric

band profile shown in Figure 3 (i.e., from a wide to narrow

gap) turns to be critical in view of the realization of broad-

band guided wave light emitters such as a SLDs. For this rea-

son, we have then designed the symmetric structure (B),

which can provide broadband emission, and it is also more

indicated for the realization of a graded index waveguide.

In Figure 5, we show the structure (B), obtained by adding

a second In0.30Ga0.70As layer and three In0.30AlyGa0.70�yAs

layers with QDs embedded. The use of InAlGaAs was neces-

sary to have layers lattice-matched to structure (A) that has a

lattice parameter aMB (x¼ 0.30) and with higher energy gaps.

The value of y was determined by imposing that each top

In0.30AlyGa0.70�yAs layer had the same energy gap of the cor-

responding bottom InxGa1�xAs layer. Hence, we also per-

formed calculation of the bandstructure and confined QD

states on the symmetric structure (B) with results shown in

Figure 6.

III. DEVICE-LEVEL SIMULATION OF RT
ELECTROLUMINESCENCE OF THE BROADBAND
METAMORPHIC QD LAYERS

The proposed multilayer structure (B) was inserted into a

realistic p-i-n device to prove its capability to produce a

broadband emission spectra under electrical pumping at room

temperature. In particular, the highly doped p- and n-regions

are realized by Al0.26Ga0.74As and In0.30Al0.5Ga0.20As, lattice

matched to the bottom and top layer of structure (B),

respectively.

The device was simulated by exploiting a 1D model that

includes a drift-diffusion description of the bulk material

(i.e., the metamorphic layers embedding each QD layer) and

a set of phenomenological REs for the QD carrier dynam-

ics.29,30 This allows to study in a rigorous way how, under

electrical injection, the QD states are populated, taking into

account both their energy distribution and the effect of the

transport of electrons and holes, injected from the opposite

sides of the junction, through the complex multilayer struc-

ture constituting the intrinsic region. The detailed description

of the modelling approach is reported in Ref. 29, and we

briefly summarize here the most relevant concepts.

The REs for the QD layers include the electron and

hole capture from the barriers into the WL state of each

layer and the cascade relaxation process in the ES and GS.

Since we focus on the modelling at room temperature, the

escape from the GS and ES to the higher energy states as

well as the escape out of the QD layers to the barrier is gov-

erned by the thermal escape. The inter-sub-band electron

and hole dynamics in the QD states are modelled by charac-

teristic scattering times (i.e., capture, relaxation time con-

stants). Here, we assume that electrons and holes are

captured in/escape out of the QDs independently, with a

FIG. 4. Experimental (open symbols) and model calculation (filled symbols)

of 10 K PL emission of metamorphic InAs/(InAlAs)/InxGa1�xAs QD nano-

structures as functions of the QD-MB mismatch for x¼ 0.15 (circles),

x¼ 0.28 (squares), and x¼ 0.31 (diamonds). The dashed arrows indicate the

effect of InAlAs barriers on emission energies. The dotted lines are guide

for the eye. The error bars are calculated considering uncertainties in AFM

estimation of QD sizes and calibration of In composition of MB.

FIG. 5. Schematics of the metamorphic structure (B) (left) and dependence on the thickness of composition x and strain e (right). The dotted line indicates the sep-

aration between the strain-relaxed and compressed regions, and the dashed line indicates separation between the compressed region and lattice-matched layers.
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dynamics governed by the carrier-carrier scattering with the

electrons or holes accumulated in the WL. This is indeed the

dominant mechanism governing the QD carrier dynamics

when the QD layers are embedded in a forward biased junc-

tion such as in the case of QD lasers and amplifiers.31 We

assume time constants of the order of few picoseconds or

hundreds of femtoseconds.48

The different electron and hole dynamics can cause a

charge imbalance in both the QD layers and in the bulk

regions; this imbalance is included in the model since the

Poisson equation is self-consistently solved with the bulk

drift diffusion equations coupled with the QD rate equa-

tions.29 The potential bending around the central QD layer,

for example, is indeed also caused by the excess of holes

accumulated in the barrier.

Carrier loss in the QD layers is caused by the spontane-

ous emission of photons, which depends on the product of

the electron and hole occupation probability in each state; in

the bulk carrier, loss is due to both spontaneous photon emis-

sion and Shockley-Read-Hall recombination.

The QD parameters used in the simulations are summar-

ized in Table I, whereas the standard material parameters are

used for the GaAs, InGaAs, and InAlGaAs layers. Transport

across the heterojunctions is modelled according to a graded

material approximation.49

We show in Figure 7(a) the calculated band diagram in

thermal equilibrium and in Figure 7(b) the band diagram

with a forward bias of 1 V corresponding to a current den-

sity of 124 A/cm2. The results in Figure 7(b) show a quasi-

equilibrium condition, maintained by the thermal coupling

among the QD layer states (GS, ES, and WL) and surround-

ing bulk states. This is confirmed by several experimental

results50,51 at RT and forward bias, where the quasi-thermal

distribution is, in general, observed down to about 200 K.

For the structure analyzed in this paper, this quasi-

equilibrium condition is broken in the two layers next to the

p-side, as the electric field sweeps out the bulk electrons,

whereas the QD electrons, being well confined in the QDs,

are still accumulated in the GS and ES. After calculating

the carrier distribution of the various layers, we were then

able to simulate the EL spectra, starting from the calcula-

tion of the spontaneous emission rate. This analysis is car-

ried on relying on the rate equation model used to represent

the carrier dynamics. Although a random population model

would be more appropriate to calculate the spontaneous

emission rate at any temperature,51 results in Ref. 51 show

FIG. 6. Conduction (blue) and va-

lence (red) energy bands for structure

(B) of Fig. 5 along the growth direc-

tion. The values of x and y for each

InxAlyGa1�x�yAs layer are indicated.

The calculated energy levels for elec-

trons (cyan) and heavy holes (purple)

confined in QDs (squares) and WL

(dashed lines) are indicated.

TABLE I. Parameters used for the QD simulations.

QD Parameters Value

QD density per layer 1011 cm�2

Capture and relaxation times for electrons/holes …

Barrier to WL 0.3 ps/0.1 ps

WL to ES 10 ps/1 ps

ES to GS 2 ps/1 ps

Radiative recombination lifetime for GS, ES, and WL 1 ns

FIG. 7. Room temperature energy

band diagrams of the p-i-n junction (in

reverse order) embedding structure (B)

in the intrinsic layer: (a) under thermal

equilibrium; (b) under forward bias of

1 V. The quasi-Fermi levels of elec-

trons and holes are indicated with

dashed lines for the bulk and with

circles for the QD GS.

143102-5 Seravalli et al. J. Appl. Phys. 119, 143102 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  130.192.165.243 On: Tue, 15 Nov

2016 11:52:48



that the rate equation model is a good approximation at RT.

The spectrum of the spontaneous emission rate reads as52

Rspð�hxÞ ¼
X

i
Csp

ð
Lð�hx–eÞ � qe;GS

i ðee;GS
i Þ

� qh;GS
i ðeh;GS

i Þ � Giðee;GS
i Þde; (4)

where the sum is carried over the QD layers, Csp is a

constant that includes the transition matrix elements and

the density of the optical mode; the integral accounts

for the interplay between the homogeneous broadening

linewidth (Lð�hxÞ) and the inhomogeneous broadening

due to the size inhomogeneity of the QDs in each layer.

qe;GS
i ðee;GS

i Þ and qh;GS
i ðeh;GS

i Þ are the occupation probabil-

ities of the GS electron and hole state, and the GS

recombination energy is e¼ ei
e,GSþ ei

h,GS. By analysing

with TiberCAD software on the variation of ei
e,GS and

ei
h,GS due to the QD size fluctuations, we have verified

that the variation of ei
e,GS is responsible for more than

90% of the inhomogeneous broadening of the recombina-

tion energy. For this reason, in Eq. (4), we include only

the inhomogeneous fluctuations of the GS electron

energy and we neglect the hole ones. G is a Gaussian

function that reads as

Gi ee;GS
i

� �
¼ 1

2pr2
i

e
�

ee;GS
i

�ee;GS
i

� �2

r2
i ; (5)

where ee;GS
i is the average GS energy of the electrons in the

i-th layer. Lð�hxÞ is a Lorentzian function with FWHM equal

to 10 meV.

Figure 8 shows the EL spectra calculated according to

Eq. (4), with a unitary Csp coefficient. For each layer, we

assumed a Gaussian inhomogeneous broadening with

FWHM (from left side to central layers of Fig. 7) of 50 meV

(x¼ 0), 60 meV (x¼ 0.10), 100 meV (x¼ 0.20), 130 meV

(x¼ 0.30), and 130 meV (x¼ 0.40). Such values correspond

to those reported for RT PL emission spectra of QD meta-

morphic structures.24,47,53 As no experimental values are

available for the InAs QDs grown on metamorphic

InAlGaAs, for the layers on the right side, we assumed a

symmetric distribution of the inhomogeneous broadening.

We plot in Figure 8 the EL spectra due to GS emission

at an increasing current injection; a FWHM bandwidth of

about 400 nm is achieved at J¼ 1200 A/cm2. For this case,

we also show in dashed lines the contribution of the various

layers: the central layers (with peak emissions at 1.6 and

1.42 lm) are those most favoured by carrier filling and there-

fore give the largest contribution to the spectrum. Despite

the lower filling of holes (see Fig. 9), the layers with emis-

sions between 1.29 lm and 1.39 lm contribute to the short

wavelength side, thanks to the overlap of their emission

lines. The first GaAs layer on the left side (peak emission

at 1.2 lm) should contribute to a further extension of the

bandwidth, but it suffers of a very poor filling of holes (see

Fig. 9): the holes, being injected from the opposite side, are

indeed almost completely captured by the lower energy gap

layers in the centre. To better investigate the non-uniform

distribution of carriers in the various layers, we plot the car-

rier occupation qi,GS
e and qi,GS

h in Figure 9. Electrons are

more confined in the QDs because of the higher potential

barrier (with respect to the shallow barrier of the holes);

therefore, at an equilibrium and a very low injection current,

the first layer closer to the n-side is already saturated by elec-

trons, whereas the other layers are almost empty. With the

increase in current, all the layers begin to be filled, with pre-

dominant electron capture in the central layers. At a high

injection current, the GS of most of layers is uniformly filled

by electrons with a consequent small electron accumulation

in the barrier. On the contrary, the holes, once injected from

the p-side, are captured in the first QD layers, but they can

also re-escape fast (faster than electrons due to the shallow

hole potential); they are transported towards the centre of the

junction where they tend to accumulate because of the lower

energy gap of the bulk material in the centre. For this reason,

the central layers are efficiently filled by holes, whereas the

external layers (toward both p- and n-side) are almost empty

even at the high injection current. Such a very non-uniform

distribution of holes could be mitigated by the use of

FIG. 8. EL spectrum at different injec-

tion conditions. Dashed lines show the

contribution of each QD metamorphic

layer for the 1.2 V biasing condition.
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modulation doping of some of the QD layers54 closer to the

n- and p- contacts, and it is now under investigation.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have demonstrated that the metamor-

phic approach allows us to use two independent parameters

(x and y) to finely tune the QD emission energy and intensity,

providing design tools to control wavelengths and bandwidth

of emission at RT.

It should be noticed here that the possibility of extend-

ing the emission to long wavelengths is a peculiar advantage

of the metamorphic QDs, as other approaches do not allow

such a wide tuning range for structures grown on GaAs.55,56

In real structures, the emission efficiencies might be different

for each layer due to the extrinsic parameters such as the QD

density and the presence of structural defects. Such effects

have already been studied and methods to compensate for

differences in the emission intensity have been put forward

such as: (i) techniques to control and spatially confine MB-

related defects,18,57 (ii) multiple stacks of QDs for layers

with lower efficiencies, and (iii) more complex grading pro-

files allowing for a better control of linear defect spatial

confinement.34

We foresee that even more advanced engineering possi-

bilities exist, as many parameters are available such as: (i)

the increase of composition x or the use of MB with differ-

ent materials to extend wavelength of operation: QDs

grown on InxGa1�xAs buffers with x> 0.40 have already

been reported,10,13,14 as long as on metamorphic buffers

based on GaAsSb;58,59 (ii) different designs of graded buf-

fers are possible to spatially control structural defect;34,60,61

(iii) change in parameters such as the density and dimen-

sions of QDs could improve the emission efficiencies and/

or wavelength tuning.42,62

By inserting the InAs QDs into layers of a step-graded

metamorphic InxGa1�xAs buffer, it is possible to obtain a

semiconductor structure emitting light in the infrared range

(1.0–1.7 lm) with a broad spectrum. By using the TiberCAD

software, we carried on model calculations of the QD levels

considering the realistic material parameters, taking into

account the effect of strain on all relevant parameters (the QD-

MB lattice mismatch, bandgaps, electron effective masses, and

band offsets) and validating the model with the experimental

emission energies. The model results agree within 20 meV

with the experimental values for all range of In composition

x and also for structures with additional InyAl1�yAs barriers,

used to increase the carrier confinement in QDs.

The actual potential of the designed metamorphic mate-

rial for the realization of an electrically pumped broadband

light source is analysed by exploiting a 1D drift-diffusion

model coupled to a set of phenomenological rate equations

describing the QD carrier dynamics. Thus, the predicted QD

populations and the associated EL spectrum take into

account both the QD energy distribution and the effect of the

multiple barrier layers on current flow. By simulating a sym-

metric energy profile structure, where In0.30AlyGa0.70�yAs

layers were added to the InxGa1�xAs ones, we derived an EL

emission spectrum that covers the whole 1.3 lm–1.7 lm

range with a 400 nm bandwidth at RT.

Hence, considering the success of metamorphic devices

for various photonic applications, we foresee that a broad-

band device based on metamorphic InAs/InGaAs QDs could

be developed and good performances could be expected. An

additional advantage of this structure design is the fact that it

can be grown on GaAs substrates, thus allowing to fabricate

devices using a technology that is already well established

for the photonic realm.
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